Matches in SemOpenAlex for { <https://semopenalex.org/work/W2994772960> ?p ?o ?g. }
- W2994772960 abstract "Abstract Discriminating between various types of seismic events is of significant scientific and societal importance. We use a machine learning method employing support vector machine (SVM) to classify tectonic earthquakes (TEs), quarry blasts (QBs), and induced earthquakes (IEs) among 30,181 1.5 < M L <2.9 seismic events that occurred in the Tianshan orogenic belt in China from 2009 to 2017. SVM classifiers are derived based on discriminant features of a training data set consisting of 1,400 TEs selected from the aftershock sequences of 18 M L ≥ 5.0 earthquakes, 2,881 QBs from repeating events occurring in those areas with a percentage of event daytime occurrence greater than 0.9, and 987 IEs from events in the known oil/gas fields and water reservoirs. The discriminant features include spectral amplitudes of observed P and S wave signals in a frequency range of 1–15 Hz normalized by the P spectrum and averaged over the entire seismic network, and an optional feature of the percentage of event daytime occurrence. Statistics analyses indicate that the accuracies of the SVM classifiers are 99.81% for TEs, 99.93% for QBs, and 99.62% for IEs. Our classification indicates that 37.57% of the seismic events are QBs occurring in possible mine areas and appearing mostly as clusters with a percentage of event daytime occurrence greater than 0.9, 50.12% are TEs occurring in various thrust faults in the Tianshan orogenic belt, and 12.31% are IEs or shallow tectonic earthquakes occurring mostly as clusters near oil and gas fields and water reservoirs. We reevaluate b values in the region and obtain relatively uniform values for the classified TEs with most of them below 1.0, as opposed to a large range of values (0.5–2.7) when all the seismic events are used in the analysis." @default.
- W2994772960 created "2019-12-26" @default.
- W2994772960 creator A5062184354 @default.
- W2994772960 creator A5074655499 @default.
- W2994772960 creator A5089410663 @default.
- W2994772960 date "2020-01-01" @default.
- W2994772960 modified "2023-09-30" @default.
- W2994772960 title "Support Vector Machine Classification of Seismic Events in the Tianshan Orogenic Belt" @default.
- W2994772960 cites W1514108924 @default.
- W2994772960 cites W1533675719 @default.
- W2994772960 cites W1590349367 @default.
- W2994772960 cites W1899256870 @default.
- W2994772960 cites W1986918920 @default.
- W2994772960 cites W1991096926 @default.
- W2994772960 cites W1991457789 @default.
- W2994772960 cites W2002220960 @default.
- W2994772960 cites W2004198792 @default.
- W2994772960 cites W2010642743 @default.
- W2994772960 cites W2014204228 @default.
- W2994772960 cites W2022478290 @default.
- W2994772960 cites W2028094423 @default.
- W2994772960 cites W2028591739 @default.
- W2994772960 cites W2032342059 @default.
- W2994772960 cites W2046331128 @default.
- W2994772960 cites W2051915955 @default.
- W2994772960 cites W2060721079 @default.
- W2994772960 cites W2065017756 @default.
- W2994772960 cites W2086289597 @default.
- W2994772960 cites W2100095092 @default.
- W2994772960 cites W2103705520 @default.
- W2994772960 cites W2104292910 @default.
- W2994772960 cites W2105300369 @default.
- W2994772960 cites W2118479872 @default.
- W2994772960 cites W2125038021 @default.
- W2994772960 cites W2136418253 @default.
- W2994772960 cites W2138574264 @default.
- W2994772960 cites W2138593374 @default.
- W2994772960 cites W2142261084 @default.
- W2994772960 cites W2148618863 @default.
- W2994772960 cites W2150136521 @default.
- W2994772960 cites W2153635508 @default.
- W2994772960 cites W2156897469 @default.
- W2994772960 cites W2156909104 @default.
- W2994772960 cites W2161049477 @default.
- W2994772960 cites W2208968870 @default.
- W2994772960 cites W2278710563 @default.
- W2994772960 cites W2296943930 @default.
- W2994772960 cites W2328406588 @default.
- W2994772960 cites W2339801012 @default.
- W2994772960 cites W2460847425 @default.
- W2994772960 cites W2467632756 @default.
- W2994772960 cites W2472822728 @default.
- W2994772960 cites W2491871969 @default.
- W2994772960 cites W2548553127 @default.
- W2994772960 cites W2557750584 @default.
- W2994772960 cites W2560194956 @default.
- W2994772960 cites W2566344030 @default.
- W2994772960 cites W2578888765 @default.
- W2994772960 cites W2594495227 @default.
- W2994772960 cites W2730761802 @default.
- W2994772960 cites W2799565130 @default.
- W2994772960 cites W2800524762 @default.
- W2994772960 cites W2810308201 @default.
- W2994772960 cites W2890729812 @default.
- W2994772960 cites W4239510810 @default.
- W2994772960 cites W4253055759 @default.
- W2994772960 cites W78846761 @default.
- W2994772960 doi "https://doi.org/10.1029/2019jb018132" @default.
- W2994772960 hasPublicationYear "2020" @default.
- W2994772960 type Work @default.
- W2994772960 sameAs 2994772960 @default.
- W2994772960 citedByCount "19" @default.
- W2994772960 countsByYear W29947729602020 @default.
- W2994772960 countsByYear W29947729602021 @default.
- W2994772960 countsByYear W29947729602022 @default.
- W2994772960 countsByYear W29947729602023 @default.
- W2994772960 crossrefType "journal-article" @default.
- W2994772960 hasAuthorship W2994772960A5062184354 @default.
- W2994772960 hasAuthorship W2994772960A5074655499 @default.
- W2994772960 hasAuthorship W2994772960A5089410663 @default.
- W2994772960 hasConcept C121332964 @default.
- W2994772960 hasConcept C12267149 @default.
- W2994772960 hasConcept C127313418 @default.
- W2994772960 hasConcept C154945302 @default.
- W2994772960 hasConcept C156801008 @default.
- W2994772960 hasConcept C165205528 @default.
- W2994772960 hasConcept C2779662365 @default.
- W2994772960 hasConcept C41008148 @default.
- W2994772960 hasConcept C62520636 @default.
- W2994772960 hasConcept C69738355 @default.
- W2994772960 hasConcept C77928131 @default.
- W2994772960 hasConcept C78397625 @default.
- W2994772960 hasConceptScore W2994772960C121332964 @default.
- W2994772960 hasConceptScore W2994772960C12267149 @default.
- W2994772960 hasConceptScore W2994772960C127313418 @default.
- W2994772960 hasConceptScore W2994772960C154945302 @default.
- W2994772960 hasConceptScore W2994772960C156801008 @default.
- W2994772960 hasConceptScore W2994772960C165205528 @default.
- W2994772960 hasConceptScore W2994772960C2779662365 @default.
- W2994772960 hasConceptScore W2994772960C41008148 @default.