Matches in SemOpenAlex for { <https://semopenalex.org/work/W2994793120> ?p ?o ?g. }
- W2994793120 endingPage "182237" @default.
- W2994793120 startingPage "182225" @default.
- W2994793120 abstract "In this paper, we propose a novel end-to-end learnable architecture based on Dense Convolutional Networks (DCN) for the classification of electrocardiogram (ECG) signals. This architecture is based on two main modules: the first is a generative module and the second is a discriminative one. The task of the generative module is to convert the one dimensional ECG signal into an image by means of fully connected, up-sampling, and convolution layers. The discriminative module takes as input the generated image and carries out feature learning and classification. To handle the data imbalance problem characterizing the ECG data, we propose to use the focal loss (FL) that is based on the idea of reshaping the standard cross-entropy loss such that it reduces the loss assigned to well-classified ECG beats. In the experiments, we validate the method using the well-known MIT-BIH arrhythmia database in four different scenarios, using four classes in the first scenario, five in the second and 12 in the third. Finally, supraventricular versus the other three and ventricular versus the other three from the scenario with four classes are used as the fourth scenario. The results obtained show that the method proposed here achieves a significant accuracy improvement over all previous state-of-the-art methods." @default.
- W2994793120 created "2019-12-26" @default.
- W2994793120 creator A5001185870 @default.
- W2994793120 creator A5011780376 @default.
- W2994793120 creator A5052594698 @default.
- W2994793120 creator A5054237841 @default.
- W2994793120 creator A5071736181 @default.
- W2994793120 date "2019-01-01" @default.
- W2994793120 modified "2023-10-02" @default.
- W2994793120 title "Dense Convolutional Networks With Focal Loss and Image Generation for Electrocardiogram Classification" @default.
- W2994793120 cites W1257380361 @default.
- W2994793120 cites W1884191083 @default.
- W2994793120 cites W1978142137 @default.
- W2994793120 cites W1988183757 @default.
- W2994793120 cites W2006301673 @default.
- W2994793120 cites W2017312399 @default.
- W2994793120 cites W2017487767 @default.
- W2994793120 cites W2022508996 @default.
- W2994793120 cites W2025492635 @default.
- W2994793120 cites W2053322856 @default.
- W2994793120 cites W2080613901 @default.
- W2994793120 cites W2095409369 @default.
- W2994793120 cites W2100537461 @default.
- W2994793120 cites W2101166342 @default.
- W2994793120 cites W2103308415 @default.
- W2994793120 cites W2104614052 @default.
- W2994793120 cites W2112796928 @default.
- W2994793120 cites W2117287331 @default.
- W2994793120 cites W2117624000 @default.
- W2994793120 cites W2124785086 @default.
- W2994793120 cites W2132300419 @default.
- W2994793120 cites W2136922672 @default.
- W2994793120 cites W2140920882 @default.
- W2994793120 cites W2148143831 @default.
- W2994793120 cites W2162693370 @default.
- W2994793120 cites W2162800060 @default.
- W2994793120 cites W2183182206 @default.
- W2994793120 cites W2194775991 @default.
- W2994793120 cites W2284198383 @default.
- W2994793120 cites W2289846183 @default.
- W2994793120 cites W2291961022 @default.
- W2994793120 cites W2299565249 @default.
- W2994793120 cites W2301358467 @default.
- W2994793120 cites W2333414777 @default.
- W2994793120 cites W2421735871 @default.
- W2994793120 cites W2476370993 @default.
- W2994793120 cites W2528333963 @default.
- W2994793120 cites W2534299759 @default.
- W2994793120 cites W2546410677 @default.
- W2994793120 cites W2550158653 @default.
- W2994793120 cites W2610751394 @default.
- W2994793120 cites W2618530766 @default.
- W2994793120 cites W2621205740 @default.
- W2994793120 cites W2751545355 @default.
- W2994793120 cites W2793268137 @default.
- W2994793120 cites W2799460054 @default.
- W2994793120 cites W2805227459 @default.
- W2994793120 cites W2884754815 @default.
- W2994793120 cites W2891342985 @default.
- W2994793120 cites W2898782523 @default.
- W2994793120 cites W2921787039 @default.
- W2994793120 cites W2924659638 @default.
- W2994793120 cites W2961638199 @default.
- W2994793120 cites W2963351448 @default.
- W2994793120 cites W2963446712 @default.
- W2994793120 cites W2969771517 @default.
- W2994793120 cites W3099014258 @default.
- W2994793120 cites W639708223 @default.
- W2994793120 doi "https://doi.org/10.1109/access.2019.2960116" @default.
- W2994793120 hasPublicationYear "2019" @default.
- W2994793120 type Work @default.
- W2994793120 sameAs 2994793120 @default.
- W2994793120 citedByCount "26" @default.
- W2994793120 countsByYear W29947931202019 @default.
- W2994793120 countsByYear W29947931202020 @default.
- W2994793120 countsByYear W29947931202021 @default.
- W2994793120 countsByYear W29947931202022 @default.
- W2994793120 countsByYear W29947931202023 @default.
- W2994793120 crossrefType "journal-article" @default.
- W2994793120 hasAuthorship W2994793120A5001185870 @default.
- W2994793120 hasAuthorship W2994793120A5011780376 @default.
- W2994793120 hasAuthorship W2994793120A5052594698 @default.
- W2994793120 hasAuthorship W2994793120A5054237841 @default.
- W2994793120 hasAuthorship W2994793120A5071736181 @default.
- W2994793120 hasBestOaLocation W29947931201 @default.
- W2994793120 hasConcept C106301342 @default.
- W2994793120 hasConcept C121332964 @default.
- W2994793120 hasConcept C138885662 @default.
- W2994793120 hasConcept C153180895 @default.
- W2994793120 hasConcept C154945302 @default.
- W2994793120 hasConcept C167981619 @default.
- W2994793120 hasConcept C2776401178 @default.
- W2994793120 hasConcept C41008148 @default.
- W2994793120 hasConcept C41895202 @default.
- W2994793120 hasConcept C45347329 @default.
- W2994793120 hasConcept C50644808 @default.
- W2994793120 hasConcept C52622490 @default.
- W2994793120 hasConcept C62520636 @default.