Matches in SemOpenAlex for { <https://semopenalex.org/work/W2994804941> ?p ?o ?g. }
- W2994804941 endingPage "103354" @default.
- W2994804941 startingPage "103354" @default.
- W2994804941 abstract "Machine learning (ML) and natural language processing have great potential to improve information extraction (IE) within electronic medical records (EMRs) for a wide variety of clinical search and summarization tools. Despite ML advancements, clinical adoption of real time IE tools for patient care remains low. Clinically motivated IE task definitions, publicly available annotated clinical datasets, and inclusion of subtasks such as coreference resolution and named entity normalization are critical for the development of useful clinical tools. We provide a task definition and comprehensive annotation requirements for a clinically motivated symptom extraction task. Four annotators labeled symptom mentions within 1108 discharge summaries from two public clinical note datasets for the tasks of named entity recognition, coreference resolution, and named entity normalization; these annotations will be released to the public. Baseline human performance was assessed and two ML models were evaluated on the symptom extraction task. 16,922 symptom mentions were identified within the discharge summaries, with 11,944 symptom instances after coreference resolution and 1255 unique normalized answer forms. Human annotator performance averaged 92.2% F1. Recurrent network model performance was 85.6% F1 (recall 85.8%, precision 85.4%), and Transformer-based model performance was 86.3% F1 (recall 86.6%, precision 86.1%). Our models extracted vague symptoms, acronyms, typographical errors, and grouping statements. The models generalized effectively to a separate clinical note corpus and can run in real time. To our knowledge, this dataset will be the largest and most comprehensive publicly released, annotated dataset for clinically motivated symptom extraction, as it includes annotations for named entity recognition, coreference, and normalization for more than 1000 clinical documents. Our neural network models extracted symptoms from unstructured clinical free text at near human performance in real time. In this paper, we present a clinically motivated task definition, dataset, and simple supervised natural language processing models to demonstrate the feasibility of building clinically applicable information extraction tools." @default.
- W2994804941 created "2019-12-26" @default.
- W2994804941 creator A5002109318 @default.
- W2994804941 creator A5050303546 @default.
- W2994804941 creator A5064130481 @default.
- W2994804941 creator A5084092556 @default.
- W2994804941 date "2020-02-01" @default.
- W2994804941 modified "2023-09-25" @default.
- W2994804941 title "Task definition, annotated dataset, and supervised natural language processing models for symptom extraction from unstructured clinical notes" @default.
- W2994804941 cites W1982059951 @default.
- W2994804941 cites W2035461353 @default.
- W2994804941 cites W2071890384 @default.
- W2994804941 cites W2122402213 @default.
- W2994804941 cites W2134498732 @default.
- W2994804941 cites W2145270227 @default.
- W2994804941 cites W2146089916 @default.
- W2994804941 cites W2152304691 @default.
- W2994804941 cites W2156235098 @default.
- W2994804941 cites W2159985898 @default.
- W2994804941 cites W2344747057 @default.
- W2994804941 cites W2396881363 @default.
- W2994804941 cites W2461681069 @default.
- W2994804941 cites W2493916176 @default.
- W2994804941 cites W2575397402 @default.
- W2994804941 cites W2611461898 @default.
- W2994804941 cites W2729101176 @default.
- W2994804941 cites W2754518417 @default.
- W2994804941 cites W2768488789 @default.
- W2994804941 cites W2770470819 @default.
- W2994804941 cites W2773448863 @default.
- W2994804941 cites W2778867749 @default.
- W2994804941 cites W2891469329 @default.
- W2994804941 cites W2902257721 @default.
- W2994804941 cites W2908110597 @default.
- W2994804941 cites W2911489562 @default.
- W2994804941 cites W2942768244 @default.
- W2994804941 cites W2994586838 @default.
- W2994804941 doi "https://doi.org/10.1016/j.jbi.2019.103354" @default.
- W2994804941 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31838210" @default.
- W2994804941 hasPublicationYear "2020" @default.
- W2994804941 type Work @default.
- W2994804941 sameAs 2994804941 @default.
- W2994804941 citedByCount "11" @default.
- W2994804941 countsByYear W29948049412020 @default.
- W2994804941 countsByYear W29948049412021 @default.
- W2994804941 countsByYear W29948049412022 @default.
- W2994804941 countsByYear W29948049412023 @default.
- W2994804941 crossrefType "journal-article" @default.
- W2994804941 hasAuthorship W2994804941A5002109318 @default.
- W2994804941 hasAuthorship W2994804941A5050303546 @default.
- W2994804941 hasAuthorship W2994804941A5064130481 @default.
- W2994804941 hasAuthorship W2994804941A5084092556 @default.
- W2994804941 hasBestOaLocation W29948049411 @default.
- W2994804941 hasConcept C100660578 @default.
- W2994804941 hasConcept C119857082 @default.
- W2994804941 hasConcept C136886441 @default.
- W2994804941 hasConcept C137293760 @default.
- W2994804941 hasConcept C138268822 @default.
- W2994804941 hasConcept C138885662 @default.
- W2994804941 hasConcept C144024400 @default.
- W2994804941 hasConcept C148524875 @default.
- W2994804941 hasConcept C153604712 @default.
- W2994804941 hasConcept C154945302 @default.
- W2994804941 hasConcept C162324750 @default.
- W2994804941 hasConcept C170858558 @default.
- W2994804941 hasConcept C187736073 @default.
- W2994804941 hasConcept C19165224 @default.
- W2994804941 hasConcept C195807954 @default.
- W2994804941 hasConcept C204321447 @default.
- W2994804941 hasConcept C23123220 @default.
- W2994804941 hasConcept C2776321320 @default.
- W2994804941 hasConcept C2779135771 @default.
- W2994804941 hasConcept C2780451532 @default.
- W2994804941 hasConcept C28076734 @default.
- W2994804941 hasConcept C41008148 @default.
- W2994804941 hasConcept C41895202 @default.
- W2994804941 hasConcept C81669768 @default.
- W2994804941 hasConceptScore W2994804941C100660578 @default.
- W2994804941 hasConceptScore W2994804941C119857082 @default.
- W2994804941 hasConceptScore W2994804941C136886441 @default.
- W2994804941 hasConceptScore W2994804941C137293760 @default.
- W2994804941 hasConceptScore W2994804941C138268822 @default.
- W2994804941 hasConceptScore W2994804941C138885662 @default.
- W2994804941 hasConceptScore W2994804941C144024400 @default.
- W2994804941 hasConceptScore W2994804941C148524875 @default.
- W2994804941 hasConceptScore W2994804941C153604712 @default.
- W2994804941 hasConceptScore W2994804941C154945302 @default.
- W2994804941 hasConceptScore W2994804941C162324750 @default.
- W2994804941 hasConceptScore W2994804941C170858558 @default.
- W2994804941 hasConceptScore W2994804941C187736073 @default.
- W2994804941 hasConceptScore W2994804941C19165224 @default.
- W2994804941 hasConceptScore W2994804941C195807954 @default.
- W2994804941 hasConceptScore W2994804941C204321447 @default.
- W2994804941 hasConceptScore W2994804941C23123220 @default.
- W2994804941 hasConceptScore W2994804941C2776321320 @default.
- W2994804941 hasConceptScore W2994804941C2779135771 @default.
- W2994804941 hasConceptScore W2994804941C2780451532 @default.
- W2994804941 hasConceptScore W2994804941C28076734 @default.