Matches in SemOpenAlex for { <https://semopenalex.org/work/W2994815579> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2994815579 endingPage "2290" @default.
- W2994815579 startingPage "2283" @default.
- W2994815579 abstract "소셜미디어플랫폼을 통해 얻어지는 비정형의 빅데이터들은 다양한 분석방법을 이용하여 소비자의 행동을 예측하는 마케팅전략으로 이용할 수 있다. 본 연구는 빅데이터를 이용해 세포마켓으로 자리를 잡고 있는 인플루언서마켓 중 패션을 전문으로 하는 패션인플루언서에 관한 소비자견해를 조사하고 분석하였다. 패션인플루언서를 키워드로 한 빈도분석결과 소비자들은 뷰티, 브랜드, 인스타그램, 쇼핑몰, 마케팅 등의 텍스트를 인지하는 것으로 나타났다. N-gram분석 결과인 ‘SNS-제품패키지’, ‘제품-재미’ 등으로 소비자들이 제품을 직접 제작 후 SNS마켓에서 판매하는 패션인플루언서에 대해 관심이 높을 뿐 아니라 즐거움을 갖고 있음을 확인할 수 있다. 빈도분석과 매트릭스분석 결과를 바탕으로 CONCOR분석을 실시한 결과 “SNS마켓”, “인플루언서 e-commerce”, “New 인플루언서”의 세 개 그룹으로 나누어졌으며, 각 그룹의 특성을 분석한 결과 소비자들이 패션인플루언서에 대해 높은 관심을 갖고 있음을 유추할 수 있다. Unstructured big data from social media platforms can be used as a marketing strategy to predict consumer behavior using a variety of analysis methods. This study investigated and analyzed the consumer awareness of fashion products specialized in fashion among the influencer markets that have established themselves as cell markets using big data. A frequency analysis using fashion influencer as a keyword showed that consumers are aware of text such as beauty, brands, instagram, shopping malls and marketing. The results of the N-gram analysis, “SNS-product package” and “product-interest,” show that consumers are not only interested in fashion influencers who produce products and sell on SNS markets, but are also satisfied. The result of the CONCOR analysis based on the frequency analysis and matrix analysis has been divided into three groups, “SNS market”, “influencer e-commerce”, “new influencer”, and the analysis of each group’s characteristics suggests that consumers are highly interested in fashion influencers." @default.
- W2994815579 created "2019-12-26" @default.
- W2994815579 creator A5058565833 @default.
- W2994815579 date "2019-11-30" @default.
- W2994815579 modified "2023-09-29" @default.
- W2994815579 title "An Analysis of Consumers’ Opinion on Fashion Influencer using Big Data" @default.
- W2994815579 doi "https://doi.org/10.9728/dcs.2019.20.11.2283" @default.
- W2994815579 hasPublicationYear "2019" @default.
- W2994815579 type Work @default.
- W2994815579 sameAs 2994815579 @default.
- W2994815579 citedByCount "5" @default.
- W2994815579 countsByYear W29948155792020 @default.
- W2994815579 countsByYear W29948155792021 @default.
- W2994815579 crossrefType "journal-article" @default.
- W2994815579 hasAuthorship W2994815579A5058565833 @default.
- W2994815579 hasConcept C111472728 @default.
- W2994815579 hasConcept C112698675 @default.
- W2994815579 hasConcept C119857082 @default.
- W2994815579 hasConcept C124101348 @default.
- W2994815579 hasConcept C136197465 @default.
- W2994815579 hasConcept C136764020 @default.
- W2994815579 hasConcept C138885662 @default.
- W2994815579 hasConcept C144133560 @default.
- W2994815579 hasConcept C154945302 @default.
- W2994815579 hasConcept C162853370 @default.
- W2994815579 hasConcept C192975520 @default.
- W2994815579 hasConcept C2524010 @default.
- W2994815579 hasConcept C26011011 @default.
- W2994815579 hasConcept C2780620123 @default.
- W2994815579 hasConcept C33923547 @default.
- W2994815579 hasConcept C41008148 @default.
- W2994815579 hasConcept C518677369 @default.
- W2994815579 hasConcept C54649085 @default.
- W2994815579 hasConcept C66402592 @default.
- W2994815579 hasConcept C75684735 @default.
- W2994815579 hasConcept C90673727 @default.
- W2994815579 hasConceptScore W2994815579C111472728 @default.
- W2994815579 hasConceptScore W2994815579C112698675 @default.
- W2994815579 hasConceptScore W2994815579C119857082 @default.
- W2994815579 hasConceptScore W2994815579C124101348 @default.
- W2994815579 hasConceptScore W2994815579C136197465 @default.
- W2994815579 hasConceptScore W2994815579C136764020 @default.
- W2994815579 hasConceptScore W2994815579C138885662 @default.
- W2994815579 hasConceptScore W2994815579C144133560 @default.
- W2994815579 hasConceptScore W2994815579C154945302 @default.
- W2994815579 hasConceptScore W2994815579C162853370 @default.
- W2994815579 hasConceptScore W2994815579C192975520 @default.
- W2994815579 hasConceptScore W2994815579C2524010 @default.
- W2994815579 hasConceptScore W2994815579C26011011 @default.
- W2994815579 hasConceptScore W2994815579C2780620123 @default.
- W2994815579 hasConceptScore W2994815579C33923547 @default.
- W2994815579 hasConceptScore W2994815579C41008148 @default.
- W2994815579 hasConceptScore W2994815579C518677369 @default.
- W2994815579 hasConceptScore W2994815579C54649085 @default.
- W2994815579 hasConceptScore W2994815579C66402592 @default.
- W2994815579 hasConceptScore W2994815579C75684735 @default.
- W2994815579 hasConceptScore W2994815579C90673727 @default.
- W2994815579 hasIssue "11" @default.
- W2994815579 hasLocation W29948155791 @default.
- W2994815579 hasOpenAccess W2994815579 @default.
- W2994815579 hasPrimaryLocation W29948155791 @default.
- W2994815579 hasRelatedWork W2603941083 @default.
- W2994815579 hasRelatedWork W2886929288 @default.
- W2994815579 hasRelatedWork W3012470176 @default.
- W2994815579 hasRelatedWork W3032487220 @default.
- W2994815579 hasRelatedWork W3149206686 @default.
- W2994815579 hasRelatedWork W3202808078 @default.
- W2994815579 hasRelatedWork W3210604460 @default.
- W2994815579 hasRelatedWork W4286961475 @default.
- W2994815579 hasRelatedWork W4312598042 @default.
- W2994815579 hasRelatedWork W4313406788 @default.
- W2994815579 hasVolume "20" @default.
- W2994815579 isParatext "false" @default.
- W2994815579 isRetracted "false" @default.
- W2994815579 magId "2994815579" @default.
- W2994815579 workType "article" @default.