Matches in SemOpenAlex for { <https://semopenalex.org/work/W2994825152> ?p ?o ?g. }
- W2994825152 endingPage "1093" @default.
- W2994825152 startingPage "1093" @default.
- W2994825152 abstract "Background: The primary care service in Catalonia has operated an asynchronous teleconsulting service between GPs and patients since 2015 (eConsulta), which has generated some 500,000 messages. New developments in big data analysis tools, particularly those involving natural language, can be used to accurately and systematically evaluate the impact of the service. Objective: The study was intended to assess the predictive potential of eConsulta messages through different combinations of vector representation of text and machine learning algorithms and to evaluate their performance. Methodology: Twenty machine learning algorithms (based on five types of algorithms and four text representation techniques) were trained using a sample of 3559 messages (169,102 words) corresponding to 2268 teleconsultations (1.57 messages per teleconsultation) in order to predict the three variables of interest (avoiding the need for a face-to-face visit, increased demand and type of use of the teleconsultation). The performance of the various combinations was measured in terms of precision, sensitivity, F-value and the ROC curve. Results: The best-trained algorithms are generally effective, proving themselves to be more robust when approximating the two binary variables “avoiding the need of a face-to-face visit” and “increased demand” (precision = 0.98 and 0.97, respectively) rather than the variable “type of query” (precision = 0.48). Conclusion: To the best of our knowledge, this study is the first to investigate a machine learning strategy for text classification using primary care teleconsultation datasets. The study illustrates the possible capacities of text analysis using artificial intelligence. The development of a robust text classification tool could be feasible by validating it with more data, making it potentially more useful for decision support for health professionals." @default.
- W2994825152 created "2019-12-26" @default.
- W2994825152 creator A5003073792 @default.
- W2994825152 creator A5006193015 @default.
- W2994825152 creator A5023832704 @default.
- W2994825152 creator A5026456773 @default.
- W2994825152 creator A5066804601 @default.
- W2994825152 creator A5082146449 @default.
- W2994825152 creator A5083244502 @default.
- W2994825152 creator A5091197106 @default.
- W2994825152 date "2020-02-09" @default.
- W2994825152 modified "2023-10-16" @default.
- W2994825152 title "Teleconsultations between Patients and Healthcare Professionals in Primary Care in Catalonia: The Evaluation of Text Classification Algorithms Using Supervised Machine Learning" @default.
- W2994825152 cites W2011301426 @default.
- W2994825152 cites W2036106933 @default.
- W2994825152 cites W2146292423 @default.
- W2994825152 cites W2345019564 @default.
- W2994825152 cites W2472803348 @default.
- W2994825152 cites W2493916176 @default.
- W2994825152 cites W2557738935 @default.
- W2994825152 cites W2562251009 @default.
- W2994825152 cites W2800645028 @default.
- W2994825152 cites W2893365278 @default.
- W2994825152 cites W2899853723 @default.
- W2994825152 cites W2912097622 @default.
- W2994825152 cites W2926287779 @default.
- W2994825152 cites W2945392980 @default.
- W2994825152 cites W3005275065 @default.
- W2994825152 cites W3106485669 @default.
- W2994825152 doi "https://doi.org/10.3390/ijerph17031093" @default.
- W2994825152 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7036927" @default.
- W2994825152 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32050435" @default.
- W2994825152 hasPublicationYear "2020" @default.
- W2994825152 type Work @default.
- W2994825152 sameAs 2994825152 @default.
- W2994825152 citedByCount "14" @default.
- W2994825152 countsByYear W29948251522020 @default.
- W2994825152 countsByYear W29948251522021 @default.
- W2994825152 countsByYear W29948251522022 @default.
- W2994825152 countsByYear W29948251522023 @default.
- W2994825152 crossrefType "journal-article" @default.
- W2994825152 hasAuthorship W2994825152A5003073792 @default.
- W2994825152 hasAuthorship W2994825152A5006193015 @default.
- W2994825152 hasAuthorship W2994825152A5023832704 @default.
- W2994825152 hasAuthorship W2994825152A5026456773 @default.
- W2994825152 hasAuthorship W2994825152A5066804601 @default.
- W2994825152 hasAuthorship W2994825152A5082146449 @default.
- W2994825152 hasAuthorship W2994825152A5083244502 @default.
- W2994825152 hasAuthorship W2994825152A5091197106 @default.
- W2994825152 hasBestOaLocation W29948251521 @default.
- W2994825152 hasConcept C11413529 @default.
- W2994825152 hasConcept C119857082 @default.
- W2994825152 hasConcept C12267149 @default.
- W2994825152 hasConcept C134306372 @default.
- W2994825152 hasConcept C136264566 @default.
- W2994825152 hasConcept C151319957 @default.
- W2994825152 hasConcept C154945302 @default.
- W2994825152 hasConcept C162324750 @default.
- W2994825152 hasConcept C182365436 @default.
- W2994825152 hasConcept C204321447 @default.
- W2994825152 hasConcept C2780378061 @default.
- W2994825152 hasConcept C31258907 @default.
- W2994825152 hasConcept C33923547 @default.
- W2994825152 hasConcept C41008148 @default.
- W2994825152 hasConceptScore W2994825152C11413529 @default.
- W2994825152 hasConceptScore W2994825152C119857082 @default.
- W2994825152 hasConceptScore W2994825152C12267149 @default.
- W2994825152 hasConceptScore W2994825152C134306372 @default.
- W2994825152 hasConceptScore W2994825152C136264566 @default.
- W2994825152 hasConceptScore W2994825152C151319957 @default.
- W2994825152 hasConceptScore W2994825152C154945302 @default.
- W2994825152 hasConceptScore W2994825152C162324750 @default.
- W2994825152 hasConceptScore W2994825152C182365436 @default.
- W2994825152 hasConceptScore W2994825152C204321447 @default.
- W2994825152 hasConceptScore W2994825152C2780378061 @default.
- W2994825152 hasConceptScore W2994825152C31258907 @default.
- W2994825152 hasConceptScore W2994825152C33923547 @default.
- W2994825152 hasConceptScore W2994825152C41008148 @default.
- W2994825152 hasIssue "3" @default.
- W2994825152 hasLocation W29948251521 @default.
- W2994825152 hasLocation W29948251522 @default.
- W2994825152 hasLocation W29948251523 @default.
- W2994825152 hasLocation W29948251524 @default.
- W2994825152 hasLocation W29948251525 @default.
- W2994825152 hasLocation W29948251526 @default.
- W2994825152 hasLocation W29948251527 @default.
- W2994825152 hasOpenAccess W2994825152 @default.
- W2994825152 hasPrimaryLocation W29948251521 @default.
- W2994825152 hasRelatedWork W2042919702 @default.
- W2994825152 hasRelatedWork W2116677773 @default.
- W2994825152 hasRelatedWork W2122502560 @default.
- W2994825152 hasRelatedWork W2150611273 @default.
- W2994825152 hasRelatedWork W2155261584 @default.
- W2994825152 hasRelatedWork W2156185805 @default.
- W2994825152 hasRelatedWork W2584231425 @default.
- W2994825152 hasRelatedWork W2945653898 @default.
- W2994825152 hasRelatedWork W4207086172 @default.
- W2994825152 hasRelatedWork W4225981436 @default.