Matches in SemOpenAlex for { <https://semopenalex.org/work/W2994846699> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2994846699 abstract "In this paper, we present a pruning approach using sparse Bayesian learning (SBL) for Volterra series (VS) based digital predistortion (DPD) in broadband wireless communication system. The sparsity assumption for the kernel coefficients of the full VS behavioral model is analyzed firstly. Then, from the view of probability, the SBL is applied to extract the active kernels of VS-DPD by exploiting the learning procedure of hyperparameters that control the sparseness of VS kernels. With this methodology, the number of VS kernels required by the DPD architecture construction can be significantly reduced at least by 79.2% and the orthogonality requirement of measurement matrix is also relaxed in the pruning process. Moreover, even under lower size of training samplings, the proposed SBL-VS-DPD can achieve better considerable accuracy performance than orthogonal matching pursuit based DPD. The simulation results show that the proposed scheme reduces the nonlinearity of power amplifiers significantly, and exhibits good trade-off between model complexity and linearization capabilities, which demonstrates the validity of the SBL in kernels pruning of VS-DPD." @default.
- W2994846699 created "2019-12-26" @default.
- W2994846699 creator A5001552076 @default.
- W2994846699 creator A5030581708 @default.
- W2994846699 creator A5042101464 @default.
- W2994846699 creator A5062033471 @default.
- W2994846699 creator A5084387332 @default.
- W2994846699 date "2019-10-01" @default.
- W2994846699 modified "2023-09-24" @default.
- W2994846699 title "Kernels Pruning for Volterra Digital Predistortion Using Sparse Bayesian Learning" @default.
- W2994846699 cites W1124870649 @default.
- W2994846699 cites W2086822168 @default.
- W2994846699 cites W2090392877 @default.
- W2994846699 cites W2121887746 @default.
- W2994846699 cites W2148154358 @default.
- W2994846699 cites W2152279006 @default.
- W2994846699 cites W2161597212 @default.
- W2994846699 cites W2171395034 @default.
- W2994846699 cites W2294224885 @default.
- W2994846699 cites W2313179380 @default.
- W2994846699 cites W2315826210 @default.
- W2994846699 cites W2317133390 @default.
- W2994846699 cites W2510107803 @default.
- W2994846699 cites W2560291652 @default.
- W2994846699 cites W2605285148 @default.
- W2994846699 cites W2903755457 @default.
- W2994846699 doi "https://doi.org/10.1109/wcsp.2019.8928023" @default.
- W2994846699 hasPublicationYear "2019" @default.
- W2994846699 type Work @default.
- W2994846699 sameAs 2994846699 @default.
- W2994846699 citedByCount "4" @default.
- W2994846699 countsByYear W29948466992020 @default.
- W2994846699 countsByYear W29948466992021 @default.
- W2994846699 countsByYear W29948466992023 @default.
- W2994846699 crossrefType "proceedings-article" @default.
- W2994846699 hasAuthorship W2994846699A5001552076 @default.
- W2994846699 hasAuthorship W2994846699A5030581708 @default.
- W2994846699 hasAuthorship W2994846699A5042101464 @default.
- W2994846699 hasAuthorship W2994846699A5062033471 @default.
- W2994846699 hasAuthorship W2994846699A5084387332 @default.
- W2994846699 hasConcept C107673813 @default.
- W2994846699 hasConcept C108010975 @default.
- W2994846699 hasConcept C11210021 @default.
- W2994846699 hasConcept C11413529 @default.
- W2994846699 hasConcept C114614502 @default.
- W2994846699 hasConcept C119857082 @default.
- W2994846699 hasConcept C121332964 @default.
- W2994846699 hasConcept C154945302 @default.
- W2994846699 hasConcept C158622935 @default.
- W2994846699 hasConcept C194257627 @default.
- W2994846699 hasConcept C2776257435 @default.
- W2994846699 hasConcept C2778532037 @default.
- W2994846699 hasConcept C2778587875 @default.
- W2994846699 hasConcept C31258907 @default.
- W2994846699 hasConcept C33923547 @default.
- W2994846699 hasConcept C41008148 @default.
- W2994846699 hasConcept C62520636 @default.
- W2994846699 hasConcept C6557445 @default.
- W2994846699 hasConcept C74193536 @default.
- W2994846699 hasConcept C8642999 @default.
- W2994846699 hasConcept C86803240 @default.
- W2994846699 hasConceptScore W2994846699C107673813 @default.
- W2994846699 hasConceptScore W2994846699C108010975 @default.
- W2994846699 hasConceptScore W2994846699C11210021 @default.
- W2994846699 hasConceptScore W2994846699C11413529 @default.
- W2994846699 hasConceptScore W2994846699C114614502 @default.
- W2994846699 hasConceptScore W2994846699C119857082 @default.
- W2994846699 hasConceptScore W2994846699C121332964 @default.
- W2994846699 hasConceptScore W2994846699C154945302 @default.
- W2994846699 hasConceptScore W2994846699C158622935 @default.
- W2994846699 hasConceptScore W2994846699C194257627 @default.
- W2994846699 hasConceptScore W2994846699C2776257435 @default.
- W2994846699 hasConceptScore W2994846699C2778532037 @default.
- W2994846699 hasConceptScore W2994846699C2778587875 @default.
- W2994846699 hasConceptScore W2994846699C31258907 @default.
- W2994846699 hasConceptScore W2994846699C33923547 @default.
- W2994846699 hasConceptScore W2994846699C41008148 @default.
- W2994846699 hasConceptScore W2994846699C62520636 @default.
- W2994846699 hasConceptScore W2994846699C6557445 @default.
- W2994846699 hasConceptScore W2994846699C74193536 @default.
- W2994846699 hasConceptScore W2994846699C8642999 @default.
- W2994846699 hasConceptScore W2994846699C86803240 @default.
- W2994846699 hasLocation W29948466991 @default.
- W2994846699 hasOpenAccess W2994846699 @default.
- W2994846699 hasPrimaryLocation W29948466991 @default.
- W2994846699 hasRelatedWork W2048382966 @default.
- W2994846699 hasRelatedWork W2101200107 @default.
- W2994846699 hasRelatedWork W2188977250 @default.
- W2994846699 hasRelatedWork W2335353069 @default.
- W2994846699 hasRelatedWork W2787834929 @default.
- W2994846699 hasRelatedWork W2994846699 @default.
- W2994846699 hasRelatedWork W3199608561 @default.
- W2994846699 hasRelatedWork W4210794429 @default.
- W2994846699 hasRelatedWork W4295309597 @default.
- W2994846699 hasRelatedWork W4323894855 @default.
- W2994846699 isParatext "false" @default.
- W2994846699 isRetracted "false" @default.
- W2994846699 magId "2994846699" @default.
- W2994846699 workType "article" @default.