Matches in SemOpenAlex for { <https://semopenalex.org/work/W2994857739> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2994857739 endingPage "2292" @default.
- W2994857739 startingPage "2277" @default.
- W2994857739 abstract "In this article, we are interested in leak identification (LI) for water supply pipelines using transient-wave (pressure) measurement data. This is challenging since water pipeline system conditions are usually uncertain in practice. For instance, the pipeline diameter, the friction factor, and the pipeline shape will vary. The conventional signal propagation model-based LI methods rely on a deterministic system model with perfectly known and fixed-value parameters, which limits their application in general cases. To address this challenge, we design a novel deep neural network (DNN)-based machine learning approach to solve the LI problem. First, we propose a novel fusion-enhanced stochastic optimization algorithm for the DNN training, which can greatly improve the DNN training performance and hence the LI accuracy, without increasing the computational cost. Second, we design a novel convolutional-based pooling network to extract the stable texture feature of transient-wave samples, thus achieving a reliable LI solution against the pipeline system dynamics. It is shown in experiments that, thanks to the above system design, the proposed DNN-based LI method can achieve a failure rate lower than $6times 10^{-4}$ when the signal-to-noise ratio is 0 dB, which outperforms the conventional LI methods." @default.
- W2994857739 created "2019-12-26" @default.
- W2994857739 creator A5039746974 @default.
- W2994857739 creator A5073153992 @default.
- W2994857739 creator A5090266750 @default.
- W2994857739 date "2020-03-01" @default.
- W2994857739 modified "2023-09-26" @default.
- W2994857739 title "Machine-Learning-Based Leakage-Event Identification for Smart Water Supply Systems" @default.
- W2994857739 cites W114517082 @default.
- W2994857739 cites W1965083795 @default.
- W2994857739 cites W1982118691 @default.
- W2994857739 cites W1983364832 @default.
- W2994857739 cites W1992771762 @default.
- W2994857739 cites W1995562189 @default.
- W2994857739 cites W2015861736 @default.
- W2994857739 cites W2028501442 @default.
- W2994857739 cites W2034996255 @default.
- W2994857739 cites W2042204969 @default.
- W2994857739 cites W2050048466 @default.
- W2994857739 cites W2056705165 @default.
- W2994857739 cites W2061863621 @default.
- W2994857739 cites W2063603851 @default.
- W2994857739 cites W2092569619 @default.
- W2994857739 cites W2100495367 @default.
- W2994857739 cites W2119437062 @default.
- W2994857739 cites W2121221900 @default.
- W2994857739 cites W2137983211 @default.
- W2994857739 cites W2144354855 @default.
- W2994857739 cites W2160815625 @default.
- W2994857739 cites W2169866162 @default.
- W2994857739 cites W2180748755 @default.
- W2994857739 cites W2239639518 @default.
- W2994857739 cites W2507690425 @default.
- W2994857739 cites W2765162684 @default.
- W2994857739 cites W2790401472 @default.
- W2994857739 cites W2790549586 @default.
- W2994857739 cites W2801469812 @default.
- W2994857739 cites W2890181480 @default.
- W2994857739 cites W2919115771 @default.
- W2994857739 cites W4248471724 @default.
- W2994857739 doi "https://doi.org/10.1109/jiot.2019.2958920" @default.
- W2994857739 hasPublicationYear "2020" @default.
- W2994857739 type Work @default.
- W2994857739 sameAs 2994857739 @default.
- W2994857739 citedByCount "24" @default.
- W2994857739 countsByYear W29948577392018 @default.
- W2994857739 countsByYear W29948577392020 @default.
- W2994857739 countsByYear W29948577392021 @default.
- W2994857739 countsByYear W29948577392022 @default.
- W2994857739 countsByYear W29948577392023 @default.
- W2994857739 crossrefType "journal-article" @default.
- W2994857739 hasAuthorship W2994857739A5039746974 @default.
- W2994857739 hasAuthorship W2994857739A5073153992 @default.
- W2994857739 hasAuthorship W2994857739A5090266750 @default.
- W2994857739 hasConcept C116834253 @default.
- W2994857739 hasConcept C139719470 @default.
- W2994857739 hasConcept C154945302 @default.
- W2994857739 hasConcept C162324750 @default.
- W2994857739 hasConcept C2777042071 @default.
- W2994857739 hasConcept C41008148 @default.
- W2994857739 hasConcept C59822182 @default.
- W2994857739 hasConcept C86803240 @default.
- W2994857739 hasConceptScore W2994857739C116834253 @default.
- W2994857739 hasConceptScore W2994857739C139719470 @default.
- W2994857739 hasConceptScore W2994857739C154945302 @default.
- W2994857739 hasConceptScore W2994857739C162324750 @default.
- W2994857739 hasConceptScore W2994857739C2777042071 @default.
- W2994857739 hasConceptScore W2994857739C41008148 @default.
- W2994857739 hasConceptScore W2994857739C59822182 @default.
- W2994857739 hasConceptScore W2994857739C86803240 @default.
- W2994857739 hasIssue "3" @default.
- W2994857739 hasLocation W29948577391 @default.
- W2994857739 hasOpenAccess W2994857739 @default.
- W2994857739 hasPrimaryLocation W29948577391 @default.
- W2994857739 hasRelatedWork W2049775471 @default.
- W2994857739 hasRelatedWork W2093578348 @default.
- W2994857739 hasRelatedWork W2358668433 @default.
- W2994857739 hasRelatedWork W2363804782 @default.
- W2994857739 hasRelatedWork W2376932109 @default.
- W2994857739 hasRelatedWork W2382290278 @default.
- W2994857739 hasRelatedWork W2390279801 @default.
- W2994857739 hasRelatedWork W2748952813 @default.
- W2994857739 hasRelatedWork W2899084033 @default.
- W2994857739 hasRelatedWork W2899374547 @default.
- W2994857739 hasVolume "7" @default.
- W2994857739 isParatext "false" @default.
- W2994857739 isRetracted "false" @default.
- W2994857739 magId "2994857739" @default.
- W2994857739 workType "article" @default.