Matches in SemOpenAlex for { <https://semopenalex.org/work/W2995059510> ?p ?o ?g. }
- W2995059510 endingPage "5506" @default.
- W2995059510 startingPage "5506" @default.
- W2995059510 abstract "Underwater gliders are energy-efficient vehicles that rely on changes in buoyancy in order to convert up and down movement into forward displacement. These vehicles are conceived as multi-sensor platforms, and can be used to collect ocean data for long periods in wide range areas. This endurance is achieved at the cost of low speed, which requires extensive planning to ensure vehicle safety and mission success, particularly when dealing with strong ocean currents. As gliders are often involved on missions that pursue multiple objectives (track events, reach a target point, avoid obstacles, sample specified areas, save energy), path planning requires a way to deal with several constraints at the same time; this makes glider path planning a multi-objective (MO) optimization problem. In this work, we analyse the usage of the non-dominated sorting genetic algorithm II (NSGA-II) to tackle a MO glider path planning application on a complex environment integrating 3D and time varying ocean currents. Multiple experiments using a glider kinematic simulator coupled with NSGA-II, combining different control parameters were carried out, to find the best parameter configuration that provided suitable paths for the desired mission. Ultimately, the system described in this work was able to optimize multi-objective trajectories, providing non dominated solutions. Such a planning tool could be of great interest in real mission planning, to assist glider pilots in selecting the most convenient paths for the vehicle, taking into account ocean forecasts and particular characteristics of the deployment location." @default.
- W2995059510 created "2019-12-26" @default.
- W2995059510 creator A5023172358 @default.
- W2995059510 creator A5034532991 @default.
- W2995059510 creator A5042704590 @default.
- W2995059510 creator A5073337435 @default.
- W2995059510 creator A5084589823 @default.
- W2995059510 date "2019-12-13" @default.
- W2995059510 modified "2023-09-27" @default.
- W2995059510 title "An Approach to Multi-Objective Path Planning Optimization for Underwater Gliders" @default.
- W2995059510 cites W162572108 @default.
- W2995059510 cites W1822778767 @default.
- W2995059510 cites W1972047326 @default.
- W2995059510 cites W1997188340 @default.
- W2995059510 cites W2007833876 @default.
- W2995059510 cites W2021082829 @default.
- W2995059510 cites W2024951603 @default.
- W2995059510 cites W2033237147 @default.
- W2995059510 cites W2038420231 @default.
- W2995059510 cites W2041147344 @default.
- W2995059510 cites W2045174204 @default.
- W2995059510 cites W2090582776 @default.
- W2995059510 cites W2120600560 @default.
- W2995059510 cites W2126105956 @default.
- W2995059510 cites W2129676199 @default.
- W2995059510 cites W2143381319 @default.
- W2995059510 cites W2146500120 @default.
- W2995059510 cites W2167159964 @default.
- W2995059510 cites W2220860189 @default.
- W2995059510 cites W2262531625 @default.
- W2995059510 cites W2267184893 @default.
- W2995059510 cites W2321899969 @default.
- W2995059510 cites W2610950837 @default.
- W2995059510 cites W2739809008 @default.
- W2995059510 cites W2772085743 @default.
- W2995059510 cites W2774264060 @default.
- W2995059510 cites W2784560834 @default.
- W2995059510 cites W2791274860 @default.
- W2995059510 cites W2791698329 @default.
- W2995059510 cites W2807637204 @default.
- W2995059510 cites W2888022926 @default.
- W2995059510 cites W2888156488 @default.
- W2995059510 cites W2891168752 @default.
- W2995059510 cites W2898681220 @default.
- W2995059510 cites W2900867652 @default.
- W2995059510 cites W2902841061 @default.
- W2995059510 cites W2982051198 @default.
- W2995059510 cites W4247707204 @default.
- W2995059510 doi "https://doi.org/10.3390/s19245506" @default.
- W2995059510 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6960702" @default.
- W2995059510 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31847132" @default.
- W2995059510 hasPublicationYear "2019" @default.
- W2995059510 type Work @default.
- W2995059510 sameAs 2995059510 @default.
- W2995059510 citedByCount "12" @default.
- W2995059510 countsByYear W29950595102020 @default.
- W2995059510 countsByYear W29950595102021 @default.
- W2995059510 countsByYear W29950595102022 @default.
- W2995059510 countsByYear W29950595102023 @default.
- W2995059510 crossrefType "journal-article" @default.
- W2995059510 hasAuthorship W2995059510A5023172358 @default.
- W2995059510 hasAuthorship W2995059510A5034532991 @default.
- W2995059510 hasAuthorship W2995059510A5042704590 @default.
- W2995059510 hasAuthorship W2995059510A5073337435 @default.
- W2995059510 hasAuthorship W2995059510A5084589823 @default.
- W2995059510 hasBestOaLocation W29950595101 @default.
- W2995059510 hasConcept C105339364 @default.
- W2995059510 hasConcept C111919701 @default.
- W2995059510 hasConcept C121332964 @default.
- W2995059510 hasConcept C127413603 @default.
- W2995059510 hasConcept C146978453 @default.
- W2995059510 hasConcept C154945302 @default.
- W2995059510 hasConcept C18762648 @default.
- W2995059510 hasConcept C199104240 @default.
- W2995059510 hasConcept C199360897 @default.
- W2995059510 hasConcept C204323151 @default.
- W2995059510 hasConcept C2777735758 @default.
- W2995059510 hasConcept C34824556 @default.
- W2995059510 hasConcept C39920418 @default.
- W2995059510 hasConcept C41008148 @default.
- W2995059510 hasConcept C44154836 @default.
- W2995059510 hasConcept C73525677 @default.
- W2995059510 hasConcept C74650414 @default.
- W2995059510 hasConcept C78519656 @default.
- W2995059510 hasConcept C79403827 @default.
- W2995059510 hasConcept C81074085 @default.
- W2995059510 hasConcept C90509273 @default.
- W2995059510 hasConceptScore W2995059510C105339364 @default.
- W2995059510 hasConceptScore W2995059510C111919701 @default.
- W2995059510 hasConceptScore W2995059510C121332964 @default.
- W2995059510 hasConceptScore W2995059510C127413603 @default.
- W2995059510 hasConceptScore W2995059510C146978453 @default.
- W2995059510 hasConceptScore W2995059510C154945302 @default.
- W2995059510 hasConceptScore W2995059510C18762648 @default.
- W2995059510 hasConceptScore W2995059510C199104240 @default.
- W2995059510 hasConceptScore W2995059510C199360897 @default.
- W2995059510 hasConceptScore W2995059510C204323151 @default.
- W2995059510 hasConceptScore W2995059510C2777735758 @default.