Matches in SemOpenAlex for { <https://semopenalex.org/work/W2995065926> ?p ?o ?g. }
- W2995065926 endingPage "264" @default.
- W2995065926 startingPage "243" @default.
- W2995065926 abstract "This chapter provides readers with a comprehensive account of how machine learning (ML) techniques, specifically artificial neural networks, have been applied to solve some of the key problems related to gathering signal intelligence. To accomplish this, it begins by presenting an overview of artificial neural networks. Then, the chapter discusses the influence of ML on the physical layer in the context of signal intelligence. ML techniques for signal intelligence typically manifest themselves as solutions to discriminative tasks. That is, many applications focus on multi-class or binary classification tasks. Perhaps the most prevalent signal intelligence task solved using ML techniques is that of automatic modulation classification. In short, this task involves determining what scheme was used to modulate the transmitted signal given the raw signal observed at the receiver. Other signal intelligence tasks that employ ML solutions include wireless interference classification. The chapter also discusses directions taken by the community towards hardware implementation." @default.
- W2995065926 created "2019-12-26" @default.
- W2995065926 creator A5054337759 @default.
- W2995065926 creator A5058335425 @default.
- W2995065926 creator A5068413452 @default.
- W2995065926 creator A5076152765 @default.
- W2995065926 creator A5083993857 @default.
- W2995065926 date "2019-12-13" @default.
- W2995065926 modified "2023-09-25" @default.
- W2995065926 title "Neural Networks for Signal Intelligence" @default.
- W2995065926 cites W1491693965 @default.
- W2995065926 cites W1498436455 @default.
- W2995065926 cites W1533404101 @default.
- W2995065926 cites W1580469463 @default.
- W2995065926 cites W1917120379 @default.
- W2995065926 cites W1994070994 @default.
- W2995065926 cites W2007339694 @default.
- W2995065926 cites W2022701556 @default.
- W2995065926 cites W2033831971 @default.
- W2995065926 cites W2091005538 @default.
- W2995065926 cites W2108598243 @default.
- W2995065926 cites W2126819771 @default.
- W2995065926 cites W2136124889 @default.
- W2995065926 cites W2147576921 @default.
- W2995065926 cites W2148445536 @default.
- W2995065926 cites W2154009134 @default.
- W2995065926 cites W2160815625 @default.
- W2995065926 cites W2163785141 @default.
- W2995065926 cites W2201990965 @default.
- W2995065926 cites W2315435889 @default.
- W2995065926 cites W2330798483 @default.
- W2995065926 cites W2524142004 @default.
- W2995065926 cites W2529388890 @default.
- W2995065926 cites W2562947506 @default.
- W2995065926 cites W2593958349 @default.
- W2995065926 cites W2603396821 @default.
- W2995065926 cites W2612824601 @default.
- W2995065926 cites W2734408173 @default.
- W2995065926 cites W2737847918 @default.
- W2995065926 cites W2766059032 @default.
- W2995065926 cites W2773170971 @default.
- W2995065926 cites W2775383661 @default.
- W2995065926 cites W2790244709 @default.
- W2995065926 cites W2807731816 @default.
- W2995065926 cites W2886161635 @default.
- W2995065926 cites W2919115771 @default.
- W2995065926 cites W2962908536 @default.
- W2995065926 cites W2962970834 @default.
- W2995065926 cites W2963250256 @default.
- W2995065926 cites W2963334029 @default.
- W2995065926 cites W2963889719 @default.
- W2995065926 cites W2964158751 @default.
- W2995065926 cites W2964324486 @default.
- W2995065926 cites W4233045210 @default.
- W2995065926 cites W4236362309 @default.
- W2995065926 doi "https://doi.org/10.1002/9781119562306.ch13" @default.
- W2995065926 hasPublicationYear "2019" @default.
- W2995065926 type Work @default.
- W2995065926 sameAs 2995065926 @default.
- W2995065926 citedByCount "9" @default.
- W2995065926 countsByYear W29950659262020 @default.
- W2995065926 countsByYear W29950659262021 @default.
- W2995065926 countsByYear W29950659262023 @default.
- W2995065926 crossrefType "other" @default.
- W2995065926 hasAuthorship W2995065926A5054337759 @default.
- W2995065926 hasAuthorship W2995065926A5058335425 @default.
- W2995065926 hasAuthorship W2995065926A5068413452 @default.
- W2995065926 hasAuthorship W2995065926A5076152765 @default.
- W2995065926 hasAuthorship W2995065926A5083993857 @default.
- W2995065926 hasConcept C119857082 @default.
- W2995065926 hasConcept C120665830 @default.
- W2995065926 hasConcept C121332964 @default.
- W2995065926 hasConcept C12267149 @default.
- W2995065926 hasConcept C127413603 @default.
- W2995065926 hasConcept C151730666 @default.
- W2995065926 hasConcept C153180895 @default.
- W2995065926 hasConcept C154945302 @default.
- W2995065926 hasConcept C192209626 @default.
- W2995065926 hasConcept C199360897 @default.
- W2995065926 hasConcept C201995342 @default.
- W2995065926 hasConcept C26517878 @default.
- W2995065926 hasConcept C2779343474 @default.
- W2995065926 hasConcept C2779843651 @default.
- W2995065926 hasConcept C2780451532 @default.
- W2995065926 hasConcept C38652104 @default.
- W2995065926 hasConcept C41008148 @default.
- W2995065926 hasConcept C50644808 @default.
- W2995065926 hasConcept C66905080 @default.
- W2995065926 hasConcept C86803240 @default.
- W2995065926 hasConcept C97931131 @default.
- W2995065926 hasConceptScore W2995065926C119857082 @default.
- W2995065926 hasConceptScore W2995065926C120665830 @default.
- W2995065926 hasConceptScore W2995065926C121332964 @default.
- W2995065926 hasConceptScore W2995065926C12267149 @default.
- W2995065926 hasConceptScore W2995065926C127413603 @default.
- W2995065926 hasConceptScore W2995065926C151730666 @default.
- W2995065926 hasConceptScore W2995065926C153180895 @default.
- W2995065926 hasConceptScore W2995065926C154945302 @default.