Matches in SemOpenAlex for { <https://semopenalex.org/work/W2995087473> ?p ?o ?g. }
- W2995087473 abstract "Land cover mapping is essential to monitoring the environment and understanding the effects of human activities on it. The automatic approaches to land cover mapping (i.e., image segmentation) mostly used traditional machine learning that requires heuristic feature design. On natural images, deep learning has outperformed traditional machine learning approaches for image segmentation. On remote sensing images, recent studies demonstrate successful applications of specific deep learning models to small-scale land cover mapping tasks (e.g., to classify wetland complexes). However, it is not readily clear which of the existing models are the best candidates for which remote sensing task. In this study, we answer that question for mapping the fundamental land cover classes using satellite radar data. We took Sentinel-1 C-band SAR images available at no cost to users as representative data. CORINE land cover map was used as a reference, and the models were trained to distinguish between the 5 major CORINE classes. We selected seven among the state-of-the-art semantic segmentation models so that they cover a diverse set of approaches: U-Net, DeepLabV3+, PSPNet, BiSeNet, SegNet, FC-DenseNet, and FRRN-B. The models were pre-trained on the ImageNet dataset and further fine-tuned in this study. All the models demonstrated solid performance with overall accuracy between 87.9% and 93.1%, and with good to a very good agreement (kappa statistic between 0.75 and 0.86). The two best models were FC-DenseNet and SegNet, with the latter having a much smaller inference time. Overall, our results indicate that the semantic segmentation models are suitable for efficient wide-area mapping using satellite SAR imagery and also provide baseline accuracy against which the newly proposed models should be evaluated." @default.
- W2995087473 created "2019-12-26" @default.
- W2995087473 creator A5037773899 @default.
- W2995087473 creator A5038043083 @default.
- W2995087473 creator A5069103777 @default.
- W2995087473 creator A5079085958 @default.
- W2995087473 creator A5083501340 @default.
- W2995087473 creator A5088352985 @default.
- W2995087473 date "2019-12-11" @default.
- W2995087473 modified "2023-09-26" @default.
- W2995087473 title "Wide-Area Land Cover Mapping with Sentinel-1 Imagery using Deep Learning Semantic Segmentation Models" @default.
- W2995087473 cites W133093544 @default.
- W2995087473 cites W1491705651 @default.
- W2995087473 cites W1538131130 @default.
- W2995087473 cites W1603160074 @default.
- W2995087473 cites W1901129140 @default.
- W2995087473 cites W1903029394 @default.
- W2995087473 cites W1912954554 @default.
- W2995087473 cites W1965362766 @default.
- W2995087473 cites W1970744877 @default.
- W2995087473 cites W1974419126 @default.
- W2995087473 cites W1978183292 @default.
- W2995087473 cites W1983364832 @default.
- W2995087473 cites W1984670836 @default.
- W2995087473 cites W1987110781 @default.
- W2995087473 cites W2006929658 @default.
- W2995087473 cites W2011961220 @default.
- W2995087473 cites W2015386604 @default.
- W2995087473 cites W2029316659 @default.
- W2995087473 cites W2035419249 @default.
- W2995087473 cites W2037170944 @default.
- W2995087473 cites W2040466059 @default.
- W2995087473 cites W2053154970 @default.
- W2995087473 cites W2053779804 @default.
- W2995087473 cites W2058947207 @default.
- W2995087473 cites W2062326663 @default.
- W2995087473 cites W2063102607 @default.
- W2995087473 cites W2066916495 @default.
- W2995087473 cites W2078433039 @default.
- W2995087473 cites W2084465266 @default.
- W2995087473 cites W2084915541 @default.
- W2995087473 cites W2088586107 @default.
- W2995087473 cites W2091695913 @default.
- W2995087473 cites W2097117768 @default.
- W2995087473 cites W2098676252 @default.
- W2995087473 cites W2102272668 @default.
- W2995087473 cites W2109943158 @default.
- W2995087473 cites W2112739286 @default.
- W2995087473 cites W2112796928 @default.
- W2995087473 cites W2115769370 @default.
- W2995087473 cites W2116360511 @default.
- W2995087473 cites W2116520955 @default.
- W2995087473 cites W2117539524 @default.
- W2995087473 cites W2121517407 @default.
- W2995087473 cites W2134086511 @default.
- W2995087473 cites W2136991772 @default.
- W2995087473 cites W2144087394 @default.
- W2995087473 cites W2156527994 @default.
- W2995087473 cites W2157927590 @default.
- W2995087473 cites W2163307144 @default.
- W2995087473 cites W2163605009 @default.
- W2995087473 cites W2165160669 @default.
- W2995087473 cites W2167594433 @default.
- W2995087473 cites W2179617327 @default.
- W2995087473 cites W2180682969 @default.
- W2995087473 cites W2194775991 @default.
- W2995087473 cites W2199321793 @default.
- W2995087473 cites W2216057030 @default.
- W2995087473 cites W2283002322 @default.
- W2995087473 cites W2291068538 @default.
- W2995087473 cites W2295582178 @default.
- W2995087473 cites W2402144811 @default.
- W2995087473 cites W2412588858 @default.
- W2995087473 cites W2412782625 @default.
- W2995087473 cites W2415454320 @default.
- W2995087473 cites W2464329271 @default.
- W2995087473 cites W2507436683 @default.
- W2995087473 cites W2520905560 @default.
- W2995087473 cites W2531409750 @default.
- W2995087473 cites W2554820184 @default.
- W2995087473 cites W2557283755 @default.
- W2995087473 cites W2557406251 @default.
- W2995087473 cites W2559597482 @default.
- W2995087473 cites W2560023338 @default.
- W2995087473 cites W2604086375 @default.
- W2995087473 cites W2609077090 @default.
- W2995087473 cites W2612445135 @default.
- W2995087473 cites W2623798337 @default.
- W2995087473 cites W2630837129 @default.
- W2995087473 cites W2745131289 @default.
- W2995087473 cites W2755803111 @default.
- W2995087473 cites W2766209824 @default.
- W2995087473 cites W2771766796 @default.
- W2995087473 cites W2782522152 @default.
- W2995087473 cites W2790741584 @default.
- W2995087473 cites W2792431031 @default.
- W2995087473 cites W2794398988 @default.
- W2995087473 cites W2808487575 @default.
- W2995087473 cites W2884821113 @default.
- W2995087473 cites W2886934227 @default.