Matches in SemOpenAlex for { <https://semopenalex.org/work/W2995171201> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2995171201 abstract "One of the stage that performed during a maternal and fetal health monitoring is the calculation of fetal heart rate and uterine contraction using Cardiotocography (CTG). The aim of fetal health using CTG is to avoid morbidity and mortality in fetus at risk of hypoxia. This paper propose a hypoxia detection by using classification. In this study, we improve deep learning method in order to increase its capability in detecting hypoxia. The improvement is conducted by several strategies i.e. input representation, data-scaling, data up-sampling, and adjusting classifier layers. The improvement is conducted by several strategies i.e. input representation, data-scaling, data up-sampling, and increasing classifier layers. For whole dataset that achieved by proposed method is 81%. The improved DenseNet achieved 50%, 43%, 46% precision, recall and f1-score respectively for hypoxia class that is not achieved by standard DenseNet." @default.
- W2995171201 created "2019-12-26" @default.
- W2995171201 creator A5008983457 @default.
- W2995171201 creator A5017890989 @default.
- W2995171201 creator A5024446836 @default.
- W2995171201 creator A5039911513 @default.
- W2995171201 creator A5048298559 @default.
- W2995171201 creator A5069933043 @default.
- W2995171201 date "2019-10-01" @default.
- W2995171201 modified "2023-10-01" @default.
- W2995171201 title "Improving Deep Learning Classifier for Fetus Hypoxia Detection in Cardiotocography Signal" @default.
- W2995171201 cites W2589022521 @default.
- W2995171201 cites W2774072613 @default.
- W2995171201 cites W2853053934 @default.
- W2995171201 cites W2854349075 @default.
- W2995171201 cites W2883978477 @default.
- W2995171201 cites W2902143477 @default.
- W2995171201 cites W2921069656 @default.
- W2995171201 cites W2963446712 @default.
- W2995171201 doi "https://doi.org/10.1109/iwbis.2019.8935835" @default.
- W2995171201 hasPublicationYear "2019" @default.
- W2995171201 type Work @default.
- W2995171201 sameAs 2995171201 @default.
- W2995171201 citedByCount "5" @default.
- W2995171201 countsByYear W29951712012020 @default.
- W2995171201 countsByYear W29951712012023 @default.
- W2995171201 crossrefType "proceedings-article" @default.
- W2995171201 hasAuthorship W2995171201A5008983457 @default.
- W2995171201 hasAuthorship W2995171201A5017890989 @default.
- W2995171201 hasAuthorship W2995171201A5024446836 @default.
- W2995171201 hasAuthorship W2995171201A5039911513 @default.
- W2995171201 hasAuthorship W2995171201A5048298559 @default.
- W2995171201 hasAuthorship W2995171201A5069933043 @default.
- W2995171201 hasConcept C119857082 @default.
- W2995171201 hasConcept C153180895 @default.
- W2995171201 hasConcept C154945302 @default.
- W2995171201 hasConcept C172680121 @default.
- W2995171201 hasConcept C178790620 @default.
- W2995171201 hasConcept C185592680 @default.
- W2995171201 hasConcept C2776046940 @default.
- W2995171201 hasConcept C2779234561 @default.
- W2995171201 hasConcept C2994111428 @default.
- W2995171201 hasConcept C41008148 @default.
- W2995171201 hasConcept C540031477 @default.
- W2995171201 hasConcept C54355233 @default.
- W2995171201 hasConcept C7836513 @default.
- W2995171201 hasConcept C86803240 @default.
- W2995171201 hasConcept C95623464 @default.
- W2995171201 hasConceptScore W2995171201C119857082 @default.
- W2995171201 hasConceptScore W2995171201C153180895 @default.
- W2995171201 hasConceptScore W2995171201C154945302 @default.
- W2995171201 hasConceptScore W2995171201C172680121 @default.
- W2995171201 hasConceptScore W2995171201C178790620 @default.
- W2995171201 hasConceptScore W2995171201C185592680 @default.
- W2995171201 hasConceptScore W2995171201C2776046940 @default.
- W2995171201 hasConceptScore W2995171201C2779234561 @default.
- W2995171201 hasConceptScore W2995171201C2994111428 @default.
- W2995171201 hasConceptScore W2995171201C41008148 @default.
- W2995171201 hasConceptScore W2995171201C540031477 @default.
- W2995171201 hasConceptScore W2995171201C54355233 @default.
- W2995171201 hasConceptScore W2995171201C7836513 @default.
- W2995171201 hasConceptScore W2995171201C86803240 @default.
- W2995171201 hasConceptScore W2995171201C95623464 @default.
- W2995171201 hasLocation W29951712011 @default.
- W2995171201 hasOpenAccess W2995171201 @default.
- W2995171201 hasPrimaryLocation W29951712011 @default.
- W2995171201 hasRelatedWork W2001652754 @default.
- W2995171201 hasRelatedWork W2549006548 @default.
- W2995171201 hasRelatedWork W2807311372 @default.
- W2995171201 hasRelatedWork W2921036759 @default.
- W2995171201 hasRelatedWork W2961085424 @default.
- W2995171201 hasRelatedWork W3007428073 @default.
- W2995171201 hasRelatedWork W3043252291 @default.
- W2995171201 hasRelatedWork W332424818 @default.
- W2995171201 hasRelatedWork W4214932115 @default.
- W2995171201 hasRelatedWork W3158004940 @default.
- W2995171201 isParatext "false" @default.
- W2995171201 isRetracted "false" @default.
- W2995171201 magId "2995171201" @default.
- W2995171201 workType "article" @default.