Matches in SemOpenAlex for { <https://semopenalex.org/work/W2995175648> ?p ?o ?g. }
- W2995175648 endingPage "359" @default.
- W2995175648 startingPage "346" @default.
- W2995175648 abstract "Abstract Predicting the response of cancer cell lines to specific drugs is one of the central problems in personalized medicine, where the cell lines show diverse characteristics. Researchers have developed a variety of computational methods to discover associations between drugs and cell lines, and improved drug sensitivity analyses by integrating heterogeneous biological data. However, choosing informative data sources and methods that can incorporate multiple sources efficiently is the challenging part of successful analysis in personalized medicine. The reason is that finding decisive factors of cancer and developing methods that can overcome the problems of integrating data, such as differences in data structures and data complexities, are difficult. In this review, we summarize recent advances in data integration-based machine learning for drug response prediction, by categorizing methods as matrix factorization-based, kernel-based and network-based methods. We also present a short description of relevant databases used as a benchmark in drug response prediction analyses, followed by providing a brief discussion of challenges faced in integrating and interpreting data from multiple sources. Finally, we address the advantages of combining multiple heterogeneous data sources on drug sensitivity analysis by showing an experimental comparison. Contact: betul.guvenc@aalto.fi" @default.
- W2995175648 created "2019-12-26" @default.
- W2995175648 creator A5018305257 @default.
- W2995175648 creator A5050279272 @default.
- W2995175648 creator A5059001924 @default.
- W2995175648 date "2019-12-14" @default.
- W2995175648 modified "2023-10-16" @default.
- W2995175648 title "Improving drug response prediction by integrating multiple data sources: matrix factorization, kernel and network-based approaches" @default.
- W2995175648 cites W1872239493 @default.
- W2995175648 cites W1986087295 @default.
- W2995175648 cites W1998898494 @default.
- W2995175648 cites W2004638738 @default.
- W2995175648 cites W2005314755 @default.
- W2995175648 cites W2018663224 @default.
- W2995175648 cites W2043398720 @default.
- W2995175648 cites W2047708582 @default.
- W2995175648 cites W2087312216 @default.
- W2995175648 cites W2091118421 @default.
- W2995175648 cites W2091758060 @default.
- W2995175648 cites W2108068107 @default.
- W2995175648 cites W2108933868 @default.
- W2995175648 cites W2114759909 @default.
- W2995175648 cites W2120204563 @default.
- W2995175648 cites W2128686067 @default.
- W2995175648 cites W2129860849 @default.
- W2995175648 cites W2140141449 @default.
- W2995175648 cites W2149775989 @default.
- W2995175648 cites W2159887157 @default.
- W2995175648 cites W2162422091 @default.
- W2995175648 cites W2163485494 @default.
- W2995175648 cites W2175970000 @default.
- W2995175648 cites W2177317049 @default.
- W2995175648 cites W2197241765 @default.
- W2995175648 cites W2220553089 @default.
- W2995175648 cites W2295182096 @default.
- W2995175648 cites W2320656788 @default.
- W2995175648 cites W2432718434 @default.
- W2995175648 cites W2461427403 @default.
- W2995175648 cites W2473876819 @default.
- W2995175648 cites W2508784321 @default.
- W2995175648 cites W2513942179 @default.
- W2995175648 cites W2554401505 @default.
- W2995175648 cites W2735647642 @default.
- W2995175648 cites W2742007096 @default.
- W2995175648 cites W2751088916 @default.
- W2995175648 cites W2767593474 @default.
- W2995175648 cites W2775061087 @default.
- W2995175648 cites W2777794149 @default.
- W2995175648 cites W2800850886 @default.
- W2995175648 cites W2805406480 @default.
- W2995175648 cites W2808199968 @default.
- W2995175648 cites W2893531376 @default.
- W2995175648 cites W2921591500 @default.
- W2995175648 cites W2948897453 @default.
- W2995175648 cites W2950063908 @default.
- W2995175648 cites W2950182476 @default.
- W2995175648 cites W2955502047 @default.
- W2995175648 cites W2965750004 @default.
- W2995175648 cites W4294216483 @default.
- W2995175648 doi "https://doi.org/10.1093/bib/bbz153" @default.
- W2995175648 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7820853" @default.
- W2995175648 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31838491" @default.
- W2995175648 hasPublicationYear "2019" @default.
- W2995175648 type Work @default.
- W2995175648 sameAs 2995175648 @default.
- W2995175648 citedByCount "41" @default.
- W2995175648 countsByYear W29951756482020 @default.
- W2995175648 countsByYear W29951756482021 @default.
- W2995175648 countsByYear W29951756482022 @default.
- W2995175648 countsByYear W29951756482023 @default.
- W2995175648 crossrefType "journal-article" @default.
- W2995175648 hasAuthorship W2995175648A5018305257 @default.
- W2995175648 hasAuthorship W2995175648A5050279272 @default.
- W2995175648 hasAuthorship W2995175648A5059001924 @default.
- W2995175648 hasBestOaLocation W29951756481 @default.
- W2995175648 hasConcept C114614502 @default.
- W2995175648 hasConcept C118552586 @default.
- W2995175648 hasConcept C119857082 @default.
- W2995175648 hasConcept C121332964 @default.
- W2995175648 hasConcept C124101348 @default.
- W2995175648 hasConcept C13280743 @default.
- W2995175648 hasConcept C136197465 @default.
- W2995175648 hasConcept C138958017 @default.
- W2995175648 hasConcept C142724271 @default.
- W2995175648 hasConcept C152671427 @default.
- W2995175648 hasConcept C154945302 @default.
- W2995175648 hasConcept C158693339 @default.
- W2995175648 hasConcept C163763905 @default.
- W2995175648 hasConcept C185798385 @default.
- W2995175648 hasConcept C199360897 @default.
- W2995175648 hasConcept C205649164 @default.
- W2995175648 hasConcept C2780035454 @default.
- W2995175648 hasConcept C2994119904 @default.
- W2995175648 hasConcept C32220436 @default.
- W2995175648 hasConcept C33923547 @default.
- W2995175648 hasConcept C41008148 @default.
- W2995175648 hasConcept C42355184 @default.
- W2995175648 hasConcept C60644358 @default.