Matches in SemOpenAlex for { <https://semopenalex.org/work/W2995228938> ?p ?o ?g. }
- W2995228938 endingPage "164070" @default.
- W2995228938 startingPage "164070" @default.
- W2995228938 abstract "Numerous efforts have been continuously made toward the realization of high spatial resolution images for medical imaging devices. Specifically, the image super-resolution technique with deep learning using convolutional neural network (CNN) has been making excellent advancements recently. Accordingly, this study is focused on developing a single image super-resolution (SISR) algorithm using deep CNN (DCNN) with supervised learning that can drastically improve the spatial resolution of chest digital tomosynthesis (CDT) images. In addition, we attempt to demonstrate the superiority of the SISR algorithm by a quantitative analysis. The proposed SISR algorithm uses a total of 5000 training CDT images (low-resolution and high-resolution) and a fully CNN based on residual structure. The image performance was analyzed using various parameters, such as intensity profile (full width at half maximum), contrast to noise ratio, coefficient of variation, and normalized noise power spectrum parameters, and the results demonstrated that the proposed SISR algorithm significantly improves the spatial resolution of the images. Further, the noise properties of the images obtained with the SISR algorithm were similar to those of the low-resolution images with up-sampling. Thus, we successfully developed the deep learning architectures in this study to improve the spatial resolution of the CDT reconstructed images." @default.
- W2995228938 created "2019-12-26" @default.
- W2995228938 creator A5056711061 @default.
- W2995228938 creator A5064592767 @default.
- W2995228938 creator A5065761932 @default.
- W2995228938 creator A5076570287 @default.
- W2995228938 date "2020-02-01" @default.
- W2995228938 modified "2023-10-18" @default.
- W2995228938 title "Investigating single image super-resolution algorithm with deep learning using convolutional neural network for chest digital tomosynthesis" @default.
- W2995228938 cites W1852587051 @default.
- W2995228938 cites W1968983912 @default.
- W2995228938 cites W1983613747 @default.
- W2995228938 cites W1984634678 @default.
- W2995228938 cites W1985009339 @default.
- W2995228938 cites W1989979581 @default.
- W2995228938 cites W2002707595 @default.
- W2995228938 cites W2029684123 @default.
- W2995228938 cites W2035677848 @default.
- W2995228938 cites W2039802750 @default.
- W2995228938 cites W2072462077 @default.
- W2995228938 cites W2079302740 @default.
- W2995228938 cites W2086957851 @default.
- W2995228938 cites W2088254198 @default.
- W2995228938 cites W2097074225 @default.
- W2995228938 cites W2097200430 @default.
- W2995228938 cites W2118963448 @default.
- W2995228938 cites W2119521461 @default.
- W2995228938 cites W2121058967 @default.
- W2995228938 cites W2130876592 @default.
- W2995228938 cites W2140721130 @default.
- W2995228938 cites W2146200771 @default.
- W2995228938 cites W2157494358 @default.
- W2995228938 cites W2157666152 @default.
- W2995228938 cites W2158380504 @default.
- W2995228938 cites W2160547390 @default.
- W2995228938 cites W2165939075 @default.
- W2995228938 cites W2171697262 @default.
- W2995228938 cites W2290736026 @default.
- W2995228938 cites W2342695184 @default.
- W2995228938 cites W2395611524 @default.
- W2995228938 cites W2469023256 @default.
- W2995228938 cites W2622826443 @default.
- W2995228938 cites W2768252195 @default.
- W2995228938 cites W2892041752 @default.
- W2995228938 cites W2898375653 @default.
- W2995228938 cites W2899314786 @default.
- W2995228938 cites W2914107945 @default.
- W2995228938 cites W3104324122 @default.
- W2995228938 doi "https://doi.org/10.1016/j.ijleo.2019.164070" @default.
- W2995228938 hasPublicationYear "2020" @default.
- W2995228938 type Work @default.
- W2995228938 sameAs 2995228938 @default.
- W2995228938 citedByCount "4" @default.
- W2995228938 countsByYear W29952289382021 @default.
- W2995228938 countsByYear W29952289382022 @default.
- W2995228938 countsByYear W29952289382023 @default.
- W2995228938 crossrefType "journal-article" @default.
- W2995228938 hasAuthorship W2995228938A5056711061 @default.
- W2995228938 hasAuthorship W2995228938A5064592767 @default.
- W2995228938 hasAuthorship W2995228938A5065761932 @default.
- W2995228938 hasAuthorship W2995228938A5076570287 @default.
- W2995228938 hasConcept C108583219 @default.
- W2995228938 hasConcept C11413529 @default.
- W2995228938 hasConcept C115961682 @default.
- W2995228938 hasConcept C153180895 @default.
- W2995228938 hasConcept C154945302 @default.
- W2995228938 hasConcept C155512373 @default.
- W2995228938 hasConcept C205372480 @default.
- W2995228938 hasConcept C31972630 @default.
- W2995228938 hasConcept C41008148 @default.
- W2995228938 hasConcept C81363708 @default.
- W2995228938 hasConcept C99498987 @default.
- W2995228938 hasConceptScore W2995228938C108583219 @default.
- W2995228938 hasConceptScore W2995228938C11413529 @default.
- W2995228938 hasConceptScore W2995228938C115961682 @default.
- W2995228938 hasConceptScore W2995228938C153180895 @default.
- W2995228938 hasConceptScore W2995228938C154945302 @default.
- W2995228938 hasConceptScore W2995228938C155512373 @default.
- W2995228938 hasConceptScore W2995228938C205372480 @default.
- W2995228938 hasConceptScore W2995228938C31972630 @default.
- W2995228938 hasConceptScore W2995228938C41008148 @default.
- W2995228938 hasConceptScore W2995228938C81363708 @default.
- W2995228938 hasConceptScore W2995228938C99498987 @default.
- W2995228938 hasFunder F4320322120 @default.
- W2995228938 hasLocation W29952289381 @default.
- W2995228938 hasOpenAccess W2995228938 @default.
- W2995228938 hasPrimaryLocation W29952289381 @default.
- W2995228938 hasRelatedWork W2731899572 @default.
- W2995228938 hasRelatedWork W2732542196 @default.
- W2995228938 hasRelatedWork W2738221750 @default.
- W2995228938 hasRelatedWork W3133861977 @default.
- W2995228938 hasRelatedWork W3156786002 @default.
- W2995228938 hasRelatedWork W4200173597 @default.
- W2995228938 hasRelatedWork W4200550458 @default.
- W2995228938 hasRelatedWork W4312417841 @default.
- W2995228938 hasRelatedWork W4321369474 @default.
- W2995228938 hasRelatedWork W564581980 @default.
- W2995228938 hasVolume "203" @default.