Matches in SemOpenAlex for { <https://semopenalex.org/work/W2995248622> ?p ?o ?g. }
- W2995248622 abstract "Evaluating the readability of a text can significantly facilitate the precise expression of information in a written form. The formulation of text readability assessment demands the identification of meaningful properties of the text and correct conversion of features to the right readability level. Sophisticated features and models are being used to evaluate the comprehensibility of texts accurately. Still, these models are challenging to implement, heavily language-dependent, and do not perform well on short texts. Deep reinforcement learning models are demonstrated to be helpful in further improvement of state-of-the-art text readability assessment models. The main contributions of the proposed approach are the automation of feature extraction, loosening the tight language dependency of text readability assessment task, and efficient use of text by finding the minimum portion of a text required to assess its readability. The experiments on Weebit, Cambridge Exams, and Persian readability datasets display the model's state-of-the-art precision, efficiency, and the capability to be applied to other languages." @default.
- W2995248622 created "2019-12-26" @default.
- W2995248622 creator A5022190009 @default.
- W2995248622 creator A5053264713 @default.
- W2995248622 date "2019-12-12" @default.
- W2995248622 modified "2023-09-23" @default.
- W2995248622 title "Text as Environment: A Deep Reinforcement Learning Text Readability Assessment Model" @default.
- W2995248622 cites W127573234 @default.
- W2995248622 cites W142535143 @default.
- W2995248622 cites W1496972067 @default.
- W2995248622 cites W1514242939 @default.
- W2995248622 cites W1528370852 @default.
- W2995248622 cites W1570767396 @default.
- W2995248622 cites W1595483645 @default.
- W2995248622 cites W1602368597 @default.
- W2995248622 cites W1704713987 @default.
- W2995248622 cites W1760231297 @default.
- W2995248622 cites W1841724727 @default.
- W2995248622 cites W1901907512 @default.
- W2995248622 cites W190511925 @default.
- W2995248622 cites W1974388374 @default.
- W2995248622 cites W1982264230 @default.
- W2995248622 cites W1982643343 @default.
- W2995248622 cites W2038732422 @default.
- W2995248622 cites W2062585132 @default.
- W2995248622 cites W2063526809 @default.
- W2995248622 cites W2110286374 @default.
- W2995248622 cites W2123933087 @default.
- W2995248622 cites W2133944470 @default.
- W2995248622 cites W2140476275 @default.
- W2995248622 cites W2153081451 @default.
- W2995248622 cites W2155968351 @default.
- W2995248622 cites W2163605009 @default.
- W2995248622 cites W2173564293 @default.
- W2995248622 cites W2250539671 @default.
- W2995248622 cites W2251589676 @default.
- W2995248622 cites W2251861964 @default.
- W2995248622 cites W2265846598 @default.
- W2995248622 cites W2284289336 @default.
- W2995248622 cites W2306322367 @default.
- W2995248622 cites W2407776548 @default.
- W2995248622 cites W2410983263 @default.
- W2995248622 cites W2529548870 @default.
- W2995248622 cites W2531409750 @default.
- W2995248622 cites W2737114849 @default.
- W2995248622 cites W2798838035 @default.
- W2995248622 cites W2800233718 @default.
- W2995248622 cites W2886505372 @default.
- W2995248622 cites W2889314060 @default.
- W2995248622 cites W2895856069 @default.
- W2995248622 cites W2896682018 @default.
- W2995248622 cites W2912334285 @default.
- W2995248622 cites W2916783690 @default.
- W2995248622 cites W2921949068 @default.
- W2995248622 cites W2929985644 @default.
- W2995248622 cites W2944139082 @default.
- W2995248622 cites W2947382429 @default.
- W2995248622 cites W2949541494 @default.
- W2995248622 cites W2950079016 @default.
- W2995248622 cites W2950141408 @default.
- W2995248622 cites W2950577311 @default.
- W2995248622 cites W2953033958 @default.
- W2995248622 cites W2954523245 @default.
- W2995248622 cites W2962690127 @default.
- W2995248622 cites W2963125010 @default.
- W2995248622 cites W2970587741 @default.
- W2995248622 cites W2978760474 @default.
- W2995248622 cites W3102330976 @default.
- W2995248622 cites W33677238 @default.
- W2995248622 hasPublicationYear "2019" @default.
- W2995248622 type Work @default.
- W2995248622 sameAs 2995248622 @default.
- W2995248622 citedByCount "4" @default.
- W2995248622 countsByYear W29952486222021 @default.
- W2995248622 crossrefType "posted-content" @default.
- W2995248622 hasAuthorship W2995248622A5022190009 @default.
- W2995248622 hasAuthorship W2995248622A5053264713 @default.
- W2995248622 hasConcept C115901376 @default.
- W2995248622 hasConcept C116834253 @default.
- W2995248622 hasConcept C127413603 @default.
- W2995248622 hasConcept C138885662 @default.
- W2995248622 hasConcept C154945302 @default.
- W2995248622 hasConcept C199360897 @default.
- W2995248622 hasConcept C201995342 @default.
- W2995248622 hasConcept C204321447 @default.
- W2995248622 hasConcept C23123220 @default.
- W2995248622 hasConcept C2776401178 @default.
- W2995248622 hasConcept C2778143727 @default.
- W2995248622 hasConcept C2780451532 @default.
- W2995248622 hasConcept C41008148 @default.
- W2995248622 hasConcept C41895202 @default.
- W2995248622 hasConcept C59822182 @default.
- W2995248622 hasConcept C78519656 @default.
- W2995248622 hasConcept C86803240 @default.
- W2995248622 hasConcept C97541855 @default.
- W2995248622 hasConceptScore W2995248622C115901376 @default.
- W2995248622 hasConceptScore W2995248622C116834253 @default.
- W2995248622 hasConceptScore W2995248622C127413603 @default.
- W2995248622 hasConceptScore W2995248622C138885662 @default.
- W2995248622 hasConceptScore W2995248622C154945302 @default.