Matches in SemOpenAlex for { <https://semopenalex.org/work/W2995313731> ?p ?o ?g. }
- W2995313731 abstract "Computational prediction of a phenotypic response upon the chemical perturbation on a biological system plays an important role in drug discovery, and many other applications. Chemical fingerprints are a widely used feature to build machine learning models. However, the fingerprints that are derived from chemical structures ignore the biological context, thus, they suffer from several problems such as the activity cliff and curse of dimensionality. Fundamentally, the chemical modulation of biological activities is a multi-scale process. It is the genome-wide chemical-target interactions that modulate chemical phenotypic responses. Thus, the genome-scale chemical-target interaction profile will more directly correlate with in vitro and in vivo activities than the chemical structure. Nevertheless, the scope of direct application of the chemical-target interaction profile is limited due to the severe incompleteness, biasness, and noisiness of bioassay data.To address the aforementioned problems, we developed a novel chemical representation method: Latent Target Interaction Profile (LTIP). LTIP embeds chemicals into a low dimensional continuous latent space that represents genome-scale chemical-target interactions. Subsequently LTIP can be used as a feature to build machine learning models. Using the drug sensitivity of cancer cell lines as a benchmark, we have shown that the LTIP robustly outperforms chemical fingerprints regardless of machine learning algorithms. Moreover, the LTIP is complementary with the chemical fingerprints. It is possible for us to combine LTIP with other fingerprints to further improve the performance of bioactivity prediction.Our results demonstrate the potential of LTIP in particular and multi-scale modeling in general in predictive modeling of chemical modulation of biological activities." @default.
- W2995313731 created "2019-12-26" @default.
- W2995313731 creator A5050104020 @default.
- W2995313731 creator A5051882054 @default.
- W2995313731 creator A5066245750 @default.
- W2995313731 date "2019-12-01" @default.
- W2995313731 modified "2023-10-06" @default.
- W2995313731 title "Biological representation of chemicals using latent target interaction profile" @default.
- W2995313731 cites W1966454287 @default.
- W2995313731 cites W2005314755 @default.
- W2995313731 cites W2009313526 @default.
- W2995313731 cites W2015147525 @default.
- W2995313731 cites W2020132970 @default.
- W2995313731 cites W2048435239 @default.
- W2995313731 cites W2050078980 @default.
- W2995313731 cites W2070789802 @default.
- W2995313731 cites W2074192927 @default.
- W2995313731 cites W2080886752 @default.
- W2995313731 cites W2094791588 @default.
- W2995313731 cites W2096541451 @default.
- W2995313731 cites W2098290597 @default.
- W2995313731 cites W2108068107 @default.
- W2995313731 cites W2113072832 @default.
- W2995313731 cites W2121604817 @default.
- W2995313731 cites W2121621209 @default.
- W2995313731 cites W2137632714 @default.
- W2995313731 cites W2143943547 @default.
- W2995313731 cites W2144267044 @default.
- W2995313731 cites W2152454589 @default.
- W2995313731 cites W2153205700 @default.
- W2995313731 cites W2159887157 @default.
- W2995313731 cites W2169815691 @default.
- W2995313731 cites W2170146596 @default.
- W2995313731 cites W2386495398 @default.
- W2995313731 cites W2520179663 @default.
- W2995313731 cites W2527836113 @default.
- W2995313731 cites W2566823781 @default.
- W2995313731 cites W2949480905 @default.
- W2995313731 cites W330953206 @default.
- W2995313731 doi "https://doi.org/10.1186/s12859-019-3241-3" @default.
- W2995313731 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6924142" @default.
- W2995313731 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31861982" @default.
- W2995313731 hasPublicationYear "2019" @default.
- W2995313731 type Work @default.
- W2995313731 sameAs 2995313731 @default.
- W2995313731 citedByCount "9" @default.
- W2995313731 countsByYear W29953137312019 @default.
- W2995313731 countsByYear W29953137312020 @default.
- W2995313731 countsByYear W29953137312021 @default.
- W2995313731 countsByYear W29953137312022 @default.
- W2995313731 countsByYear W29953137312023 @default.
- W2995313731 crossrefType "journal-article" @default.
- W2995313731 hasAuthorship W2995313731A5050104020 @default.
- W2995313731 hasAuthorship W2995313731A5051882054 @default.
- W2995313731 hasAuthorship W2995313731A5066245750 @default.
- W2995313731 hasBestOaLocation W29953137311 @default.
- W2995313731 hasConcept C111030470 @default.
- W2995313731 hasConcept C119857082 @default.
- W2995313731 hasConcept C138885662 @default.
- W2995313731 hasConcept C151730666 @default.
- W2995313731 hasConcept C154945302 @default.
- W2995313731 hasConcept C17744445 @default.
- W2995313731 hasConcept C186060115 @default.
- W2995313731 hasConcept C199539241 @default.
- W2995313731 hasConcept C2776359362 @default.
- W2995313731 hasConcept C2776401178 @default.
- W2995313731 hasConcept C2779343474 @default.
- W2995313731 hasConcept C41008148 @default.
- W2995313731 hasConcept C41895202 @default.
- W2995313731 hasConcept C60644358 @default.
- W2995313731 hasConcept C70721500 @default.
- W2995313731 hasConcept C74187038 @default.
- W2995313731 hasConcept C86803240 @default.
- W2995313731 hasConcept C94625758 @default.
- W2995313731 hasConcept C99726746 @default.
- W2995313731 hasConceptScore W2995313731C111030470 @default.
- W2995313731 hasConceptScore W2995313731C119857082 @default.
- W2995313731 hasConceptScore W2995313731C138885662 @default.
- W2995313731 hasConceptScore W2995313731C151730666 @default.
- W2995313731 hasConceptScore W2995313731C154945302 @default.
- W2995313731 hasConceptScore W2995313731C17744445 @default.
- W2995313731 hasConceptScore W2995313731C186060115 @default.
- W2995313731 hasConceptScore W2995313731C199539241 @default.
- W2995313731 hasConceptScore W2995313731C2776359362 @default.
- W2995313731 hasConceptScore W2995313731C2776401178 @default.
- W2995313731 hasConceptScore W2995313731C2779343474 @default.
- W2995313731 hasConceptScore W2995313731C41008148 @default.
- W2995313731 hasConceptScore W2995313731C41895202 @default.
- W2995313731 hasConceptScore W2995313731C60644358 @default.
- W2995313731 hasConceptScore W2995313731C70721500 @default.
- W2995313731 hasConceptScore W2995313731C74187038 @default.
- W2995313731 hasConceptScore W2995313731C86803240 @default.
- W2995313731 hasConceptScore W2995313731C94625758 @default.
- W2995313731 hasConceptScore W2995313731C99726746 @default.
- W2995313731 hasIssue "S24" @default.
- W2995313731 hasLocation W29953137311 @default.
- W2995313731 hasLocation W29953137312 @default.
- W2995313731 hasLocation W29953137313 @default.
- W2995313731 hasLocation W29953137314 @default.
- W2995313731 hasOpenAccess W2995313731 @default.