Matches in SemOpenAlex for { <https://semopenalex.org/work/W2995320383> ?p ?o ?g. }
- W2995320383 endingPage "6276" @default.
- W2995320383 startingPage "6276" @default.
- W2995320383 abstract "Heterogeneity in intratumoral cancers leads to discrepancies in drug responsiveness, due to diverse genomics profiles. Thus, prediction of drug responsiveness is critical in precision medicine. So far, in drug responsiveness prediction, drugs' molecular fingerprints, along with mutation statuses, have not been considered. Here, we constructed a 1-dimensional convolution neural network model, DeepIC50, to predict three drug responsiveness classes, based on 27,756 features including mutation statuses and various drug molecular fingerprints. As a result, DeepIC50 showed better cell viability IC50 prediction accuracy in pan-cancer cell lines over two independent cancer cell line datasets. Gastric cancer (GC) is not only one of the lethal cancer types in East Asia, but also a heterogeneous cancer type. Currently approved targeted therapies in GC are only trastuzumab and ramucirumab. Responsive GC patients for the drugs are limited, and more drugs should be developed in GC. Due to the importance of GC, we applied DeepIC50 to a real GC patient dataset. Drug responsiveness prediction in the patient dataset by DeepIC50, when compared to the other models, were comparable to responsiveness observed in GC cell lines. DeepIC50 could possibly accurately predict drug responsiveness, to new compounds, in diverse cancer cell lines, in the drug discovery process." @default.
- W2995320383 created "2019-12-26" @default.
- W2995320383 creator A5002413587 @default.
- W2995320383 creator A5009861775 @default.
- W2995320383 creator A5029840648 @default.
- W2995320383 creator A5050958190 @default.
- W2995320383 creator A5058531980 @default.
- W2995320383 creator A5066851759 @default.
- W2995320383 creator A5070868483 @default.
- W2995320383 creator A5072855523 @default.
- W2995320383 creator A5073141466 @default.
- W2995320383 creator A5073284312 @default.
- W2995320383 creator A5081771012 @default.
- W2995320383 creator A5087145804 @default.
- W2995320383 date "2019-12-12" @default.
- W2995320383 modified "2023-10-01" @default.
- W2995320383 title "A Deep Learning Model for Cell Growth Inhibition IC50 Prediction and Its Application for Gastric Cancer Patients" @default.
- W2995320383 cites W1752064231 @default.
- W2995320383 cites W19078547 @default.
- W2995320383 cites W1974918249 @default.
- W2995320383 cites W1983450497 @default.
- W2995320383 cites W1983478747 @default.
- W2995320383 cites W1990286220 @default.
- W2995320383 cites W1996112954 @default.
- W2995320383 cites W2029980980 @default.
- W2995320383 cites W2043398720 @default.
- W2995320383 cites W2084087750 @default.
- W2995320383 cites W2100439220 @default.
- W2995320383 cites W2108068107 @default.
- W2995320383 cites W2116623522 @default.
- W2995320383 cites W2118801084 @default.
- W2995320383 cites W2126547130 @default.
- W2995320383 cites W2151916274 @default.
- W2995320383 cites W2159887157 @default.
- W2995320383 cites W2167995206 @default.
- W2995320383 cites W2170505850 @default.
- W2995320383 cites W2294615141 @default.
- W2995320383 cites W2501016862 @default.
- W2995320383 cites W2558715006 @default.
- W2995320383 cites W2568779902 @default.
- W2995320383 cites W2569335714 @default.
- W2995320383 cites W2581513535 @default.
- W2995320383 cites W2586159641 @default.
- W2995320383 cites W2592026307 @default.
- W2995320383 cites W2612467560 @default.
- W2995320383 cites W2747036018 @default.
- W2995320383 cites W2807463161 @default.
- W2995320383 cites W2889646458 @default.
- W2995320383 cites W2899070097 @default.
- W2995320383 cites W2911535432 @default.
- W2995320383 cites W2911969472 @default.
- W2995320383 cites W2945153561 @default.
- W2995320383 cites W2953381975 @default.
- W2995320383 cites W4247513463 @default.
- W2995320383 doi "https://doi.org/10.3390/ijms20246276" @default.
- W2995320383 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6941066" @default.
- W2995320383 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31842404" @default.
- W2995320383 hasPublicationYear "2019" @default.
- W2995320383 type Work @default.
- W2995320383 sameAs 2995320383 @default.
- W2995320383 citedByCount "17" @default.
- W2995320383 countsByYear W29953203832021 @default.
- W2995320383 countsByYear W29953203832022 @default.
- W2995320383 countsByYear W29953203832023 @default.
- W2995320383 crossrefType "journal-article" @default.
- W2995320383 hasAuthorship W2995320383A5002413587 @default.
- W2995320383 hasAuthorship W2995320383A5009861775 @default.
- W2995320383 hasAuthorship W2995320383A5029840648 @default.
- W2995320383 hasAuthorship W2995320383A5050958190 @default.
- W2995320383 hasAuthorship W2995320383A5058531980 @default.
- W2995320383 hasAuthorship W2995320383A5066851759 @default.
- W2995320383 hasAuthorship W2995320383A5070868483 @default.
- W2995320383 hasAuthorship W2995320383A5072855523 @default.
- W2995320383 hasAuthorship W2995320383A5073141466 @default.
- W2995320383 hasAuthorship W2995320383A5073284312 @default.
- W2995320383 hasAuthorship W2995320383A5081771012 @default.
- W2995320383 hasAuthorship W2995320383A5087145804 @default.
- W2995320383 hasBestOaLocation W29953203831 @default.
- W2995320383 hasConcept C121608353 @default.
- W2995320383 hasConcept C126322002 @default.
- W2995320383 hasConcept C142724271 @default.
- W2995320383 hasConcept C163763905 @default.
- W2995320383 hasConcept C2779551604 @default.
- W2995320383 hasConcept C2779786085 @default.
- W2995320383 hasConcept C2780035454 @default.
- W2995320383 hasConcept C2994372470 @default.
- W2995320383 hasConcept C32220436 @default.
- W2995320383 hasConcept C530470458 @default.
- W2995320383 hasConcept C60644358 @default.
- W2995320383 hasConcept C70721500 @default.
- W2995320383 hasConcept C71924100 @default.
- W2995320383 hasConcept C86803240 @default.
- W2995320383 hasConcept C96232424 @default.
- W2995320383 hasConcept C98274493 @default.
- W2995320383 hasConceptScore W2995320383C121608353 @default.
- W2995320383 hasConceptScore W2995320383C126322002 @default.
- W2995320383 hasConceptScore W2995320383C142724271 @default.
- W2995320383 hasConceptScore W2995320383C163763905 @default.