Matches in SemOpenAlex for { <https://semopenalex.org/work/W2995341844> ?p ?o ?g. }
- W2995341844 endingPage "105301" @default.
- W2995341844 startingPage "105301" @default.
- W2995341844 abstract "Abstract There have been increasing interests in user identity linkage (UIL) across social networks since it supports many applications such as cross-net recommendation, link prediction, and network fusion. Existing graph embedding based techniques cannot sufficiently model the higher-order structural properties in UIL. Moreover, the very limited supervisory anchor pairs (SAP), which are crucial for the task of UIL across social networks, are not utilized effectively. In this paper, a novel framework named multi-granularity graph embedding (MGGE) is proposed. And as an extension, a deep multi-granularity graph embedding model (DeepMGGE) is further developed. DeepMGGE uses the random walk (RW) to capture the higher-order structural proximities which is ignored by IONE Liu et al. (2016). Besides, DeepMGGE employs a heuristic edge-weighting mechanism given by deep learning to better capture the non-linear SAP-oriented structural properties. Experiments on real social networks demonstrate that the DeepMGGE outperforms state-of-the-art methods." @default.
- W2995341844 created "2019-12-26" @default.
- W2995341844 creator A5008082564 @default.
- W2995341844 creator A5031220156 @default.
- W2995341844 creator A5060987351 @default.
- W2995341844 creator A5063481044 @default.
- W2995341844 date "2020-04-01" @default.
- W2995341844 modified "2023-10-16" @default.
- W2995341844 title "Deep multi-granularity graph embedding for user identity linkage across social networks" @default.
- W2995341844 cites W1498436455 @default.
- W2995341844 cites W2014374374 @default.
- W2995341844 cites W2016621483 @default.
- W2995341844 cites W2017082499 @default.
- W2995341844 cites W2018045523 @default.
- W2995341844 cites W2025172647 @default.
- W2995341844 cites W2059422848 @default.
- W2995341844 cites W2102086994 @default.
- W2995341844 cites W2107427454 @default.
- W2995341844 cites W2145421234 @default.
- W2995341844 cites W2157082398 @default.
- W2995341844 cites W2185939569 @default.
- W2995341844 cites W2241660235 @default.
- W2995341844 cites W2318901577 @default.
- W2995341844 cites W2345465422 @default.
- W2995341844 cites W2350506101 @default.
- W2995341844 cites W2415901874 @default.
- W2995341844 cites W2598689838 @default.
- W2995341844 cites W2612102978 @default.
- W2995341844 cites W2612872092 @default.
- W2995341844 cites W2740125792 @default.
- W2995341844 cites W2794504349 @default.
- W2995341844 cites W2898284445 @default.
- W2995341844 cites W2901249224 @default.
- W2995341844 cites W2916784550 @default.
- W2995341844 cites W2917491157 @default.
- W2995341844 cites W2956603593 @default.
- W2995341844 doi "https://doi.org/10.1016/j.knosys.2019.105301" @default.
- W2995341844 hasPublicationYear "2020" @default.
- W2995341844 type Work @default.
- W2995341844 sameAs 2995341844 @default.
- W2995341844 citedByCount "24" @default.
- W2995341844 countsByYear W29953418442020 @default.
- W2995341844 countsByYear W29953418442021 @default.
- W2995341844 countsByYear W29953418442022 @default.
- W2995341844 countsByYear W29953418442023 @default.
- W2995341844 crossrefType "journal-article" @default.
- W2995341844 hasAuthorship W2995341844A5008082564 @default.
- W2995341844 hasAuthorship W2995341844A5031220156 @default.
- W2995341844 hasAuthorship W2995341844A5060987351 @default.
- W2995341844 hasAuthorship W2995341844A5063481044 @default.
- W2995341844 hasConcept C104317684 @default.
- W2995341844 hasConcept C111919701 @default.
- W2995341844 hasConcept C121332964 @default.
- W2995341844 hasConcept C132525143 @default.
- W2995341844 hasConcept C136764020 @default.
- W2995341844 hasConcept C154945302 @default.
- W2995341844 hasConcept C177774035 @default.
- W2995341844 hasConcept C185592680 @default.
- W2995341844 hasConcept C24890656 @default.
- W2995341844 hasConcept C2778355321 @default.
- W2995341844 hasConcept C31266012 @default.
- W2995341844 hasConcept C41008148 @default.
- W2995341844 hasConcept C41608201 @default.
- W2995341844 hasConcept C4727928 @default.
- W2995341844 hasConcept C518677369 @default.
- W2995341844 hasConcept C55493867 @default.
- W2995341844 hasConcept C80444323 @default.
- W2995341844 hasConceptScore W2995341844C104317684 @default.
- W2995341844 hasConceptScore W2995341844C111919701 @default.
- W2995341844 hasConceptScore W2995341844C121332964 @default.
- W2995341844 hasConceptScore W2995341844C132525143 @default.
- W2995341844 hasConceptScore W2995341844C136764020 @default.
- W2995341844 hasConceptScore W2995341844C154945302 @default.
- W2995341844 hasConceptScore W2995341844C177774035 @default.
- W2995341844 hasConceptScore W2995341844C185592680 @default.
- W2995341844 hasConceptScore W2995341844C24890656 @default.
- W2995341844 hasConceptScore W2995341844C2778355321 @default.
- W2995341844 hasConceptScore W2995341844C31266012 @default.
- W2995341844 hasConceptScore W2995341844C41008148 @default.
- W2995341844 hasConceptScore W2995341844C41608201 @default.
- W2995341844 hasConceptScore W2995341844C4727928 @default.
- W2995341844 hasConceptScore W2995341844C518677369 @default.
- W2995341844 hasConceptScore W2995341844C55493867 @default.
- W2995341844 hasConceptScore W2995341844C80444323 @default.
- W2995341844 hasFunder F4320321001 @default.
- W2995341844 hasFunder F4320322687 @default.
- W2995341844 hasFunder F4320324805 @default.
- W2995341844 hasFunder F4320335777 @default.
- W2995341844 hasLocation W29953418441 @default.
- W2995341844 hasOpenAccess W2995341844 @default.
- W2995341844 hasPrimaryLocation W29953418441 @default.
- W2995341844 hasRelatedWork W2152805122 @default.
- W2995341844 hasRelatedWork W2923818335 @default.
- W2995341844 hasRelatedWork W3035116611 @default.
- W2995341844 hasRelatedWork W3044354590 @default.
- W2995341844 hasRelatedWork W3044604502 @default.
- W2995341844 hasRelatedWork W3149439221 @default.
- W2995341844 hasRelatedWork W4226361842 @default.