Matches in SemOpenAlex for { <https://semopenalex.org/work/W2995489316> ?p ?o ?g. }
- W2995489316 endingPage "367" @default.
- W2995489316 startingPage "271" @default.
- W2995489316 abstract "Let G be a finite 2-generated non-cyclic group. The spread of G is the largest integer k such that for any nontrivial elements x1,…,xk, there exists y G ∈ G such that G = 〈xi,y〉 for all i. The more restrictive notion of uniform spread, denoted u(G), requires y to be chosen from a fixed conjugacy class of G, and a theorem of Breuer, Guralnick and Kantor states that u(G) ⩾ 2 for every non-abelian finite simple group G. For any group with u(G) ⩾ 1, we define the uniform domination number γu(G) of G to be the minimal size of a subset S of conjugate elements such that for each nontrivial x ∈ G there exists y ∈ S with G = 〈x, y〉 (in this situation, we say that S is a uniform dominating set for G). We introduced the latter notion in a recent paper, where we used probabilistic methods to determine close to best possible bounds on γu(G) for all simple groups G. In this paper we establish several new results on the spread, uniform spread and uniform domination number of finite groups and finite simple groups. For example, we make substantial progress towards a classification of the simple groups G with γu (G) = 2, and we study the associated probability that two randomly chosen conjugate elements form a uniform dominating set for G. We also establish new results concerning the 2-generation of soluble and symmetric groups, and we present several open problems." @default.
- W2995489316 created "2019-12-26" @default.
- W2995489316 creator A5024944956 @default.
- W2995489316 creator A5087244891 @default.
- W2995489316 date "2020-08-01" @default.
- W2995489316 modified "2023-09-25" @default.
- W2995489316 title "Finite groups, 2-generation and the uniform domination number" @default.
- W2995489316 cites W14581337 @default.
- W2995489316 cites W1490067361 @default.
- W2995489316 cites W1493654001 @default.
- W2995489316 cites W1515379151 @default.
- W2995489316 cites W1970121927 @default.
- W2995489316 cites W1976677460 @default.
- W2995489316 cites W1981330140 @default.
- W2995489316 cites W1981477383 @default.
- W2995489316 cites W1998876858 @default.
- W2995489316 cites W2006114752 @default.
- W2995489316 cites W2015401703 @default.
- W2995489316 cites W2015901827 @default.
- W2995489316 cites W2021936272 @default.
- W2995489316 cites W2028093740 @default.
- W2995489316 cites W2031967632 @default.
- W2995489316 cites W2038002896 @default.
- W2995489316 cites W2039252607 @default.
- W2995489316 cites W2039498982 @default.
- W2995489316 cites W2040409954 @default.
- W2995489316 cites W2042214251 @default.
- W2995489316 cites W2045459539 @default.
- W2995489316 cites W2046433533 @default.
- W2995489316 cites W2049247960 @default.
- W2995489316 cites W2055566058 @default.
- W2995489316 cites W2058583722 @default.
- W2995489316 cites W2064441649 @default.
- W2995489316 cites W2066853515 @default.
- W2995489316 cites W2068350043 @default.
- W2995489316 cites W2074294932 @default.
- W2995489316 cites W2076612807 @default.
- W2995489316 cites W2078590838 @default.
- W2995489316 cites W2095329978 @default.
- W2995489316 cites W2113983768 @default.
- W2995489316 cites W2121777536 @default.
- W2995489316 cites W2146337808 @default.
- W2995489316 cites W2147813260 @default.
- W2995489316 cites W2148757468 @default.
- W2995489316 cites W2150164926 @default.
- W2995489316 cites W2164314258 @default.
- W2995489316 cites W2611243569 @default.
- W2995489316 cites W2766089640 @default.
- W2995489316 cites W2792769747 @default.
- W2995489316 cites W2963294419 @default.
- W2995489316 cites W2964119372 @default.
- W2995489316 cites W2964190226 @default.
- W2995489316 cites W3106067876 @default.
- W2995489316 cites W4206451259 @default.
- W2995489316 cites W4213060864 @default.
- W2995489316 cites W4213333252 @default.
- W2995489316 cites W4229824918 @default.
- W2995489316 cites W4234295943 @default.
- W2995489316 cites W4235578156 @default.
- W2995489316 cites W4253206700 @default.
- W2995489316 cites W4253687655 @default.
- W2995489316 doi "https://doi.org/10.1007/s11856-020-2050-8" @default.
- W2995489316 hasPublicationYear "2020" @default.
- W2995489316 type Work @default.
- W2995489316 sameAs 2995489316 @default.
- W2995489316 citedByCount "16" @default.
- W2995489316 countsByYear W29954893162019 @default.
- W2995489316 countsByYear W29954893162020 @default.
- W2995489316 countsByYear W29954893162021 @default.
- W2995489316 countsByYear W29954893162022 @default.
- W2995489316 countsByYear W29954893162023 @default.
- W2995489316 crossrefType "journal-article" @default.
- W2995489316 hasAuthorship W2995489316A5024944956 @default.
- W2995489316 hasAuthorship W2995489316A5087244891 @default.
- W2995489316 hasBestOaLocation W29954893162 @default.
- W2995489316 hasConcept C111472728 @default.
- W2995489316 hasConcept C114614502 @default.
- W2995489316 hasConcept C118615104 @default.
- W2995489316 hasConcept C134306372 @default.
- W2995489316 hasConcept C136170076 @default.
- W2995489316 hasConcept C138885662 @default.
- W2995489316 hasConcept C162392398 @default.
- W2995489316 hasConcept C178790620 @default.
- W2995489316 hasConcept C185592680 @default.
- W2995489316 hasConcept C199360897 @default.
- W2995489316 hasConcept C202444582 @default.
- W2995489316 hasConcept C2777404646 @default.
- W2995489316 hasConcept C2780586882 @default.
- W2995489316 hasConcept C2781311116 @default.
- W2995489316 hasConcept C33923547 @default.
- W2995489316 hasConcept C41008148 @default.
- W2995489316 hasConcept C51997251 @default.
- W2995489316 hasConcept C5383885 @default.
- W2995489316 hasConcept C63388996 @default.
- W2995489316 hasConcept C81651864 @default.
- W2995489316 hasConcept C87945829 @default.
- W2995489316 hasConcept C97137487 @default.
- W2995489316 hasConceptScore W2995489316C111472728 @default.