Matches in SemOpenAlex for { <https://semopenalex.org/work/W2995512287> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2995512287 endingPage "39" @default.
- W2995512287 startingPage "26" @default.
- W2995512287 abstract "There are many methods of forecasting, often based on the specific conditions of the given time series which are frequently the result of research in scientific centres and universities. Nevertheless, there are also models that were created by scientists in a particular company, examples may be Google or Facebook. The latter one has developed one of the latest Prophet forecasting models published in 2017 by Taylor & Letham. This model is completely new and so it is appropriate to subject it to further research, which is the topic of this article. To accomplish this research objective, the aim of this work is to identify seasonal trends in revenue development in a selected e-commerce segment based on the assessment of the applicability of the Facebook Prophet forecasting tool. To accomplish this goal, the Python Prophet is decomposed with a subsequent two-year forecast. Accuracy of this model is measured by RMSA and coverage. The e-commerce subject selected is active primarily in the field of sales of professional outdoor supplies and organizing outdoor educational courses, seminars and competitions. It is clear from the prediction that the e-commerce entity shows a strong sales period with the beginning of the spring season and then, due to the summer, decline, until the pre-Christmas period. The subject has little growth potential and a new impetus is needed to increase sales and thus restore the growth trend. It has been confirmed that Prophet is a suitable tool for debugging seasonal tendencies." @default.
- W2995512287 created "2019-12-26" @default.
- W2995512287 creator A5047924825 @default.
- W2995512287 creator A5059442935 @default.
- W2995512287 date "2019-12-17" @default.
- W2995512287 modified "2023-10-06" @default.
- W2995512287 title "Decomposition and Forecasting Time Series in the Business Economy Using Prophet Forecasting Model" @default.
- W2995512287 cites W170458018 @default.
- W2995512287 cites W2016210396 @default.
- W2995512287 cites W2048665112 @default.
- W2995512287 cites W2052452825 @default.
- W2995512287 cites W2099271915 @default.
- W2995512287 cites W2116512828 @default.
- W2995512287 cites W2134070777 @default.
- W2995512287 cites W2177978941 @default.
- W2995512287 cites W2278984902 @default.
- W2995512287 cites W2747599906 @default.
- W2995512287 cites W2762952103 @default.
- W2995512287 cites W2808800115 @default.
- W2995512287 cites W2908787636 @default.
- W2995512287 doi "https://doi.org/10.18267/j.cebr.221" @default.
- W2995512287 hasPublicationYear "2019" @default.
- W2995512287 type Work @default.
- W2995512287 sameAs 2995512287 @default.
- W2995512287 citedByCount "12" @default.
- W2995512287 countsByYear W29955122872021 @default.
- W2995512287 countsByYear W29955122872022 @default.
- W2995512287 countsByYear W29955122872023 @default.
- W2995512287 crossrefType "journal-article" @default.
- W2995512287 hasAuthorship W2995512287A5047924825 @default.
- W2995512287 hasAuthorship W2995512287A5059442935 @default.
- W2995512287 hasBestOaLocation W29955122871 @default.
- W2995512287 hasConcept C10138342 @default.
- W2995512287 hasConcept C144133560 @default.
- W2995512287 hasConcept C161191863 @default.
- W2995512287 hasConcept C162324750 @default.
- W2995512287 hasConcept C162853370 @default.
- W2995512287 hasConcept C195487862 @default.
- W2995512287 hasConcept C2777855551 @default.
- W2995512287 hasConcept C33923547 @default.
- W2995512287 hasConcept C41008148 @default.
- W2995512287 hasConcept C42475967 @default.
- W2995512287 hasConceptScore W2995512287C10138342 @default.
- W2995512287 hasConceptScore W2995512287C144133560 @default.
- W2995512287 hasConceptScore W2995512287C161191863 @default.
- W2995512287 hasConceptScore W2995512287C162324750 @default.
- W2995512287 hasConceptScore W2995512287C162853370 @default.
- W2995512287 hasConceptScore W2995512287C195487862 @default.
- W2995512287 hasConceptScore W2995512287C2777855551 @default.
- W2995512287 hasConceptScore W2995512287C33923547 @default.
- W2995512287 hasConceptScore W2995512287C41008148 @default.
- W2995512287 hasConceptScore W2995512287C42475967 @default.
- W2995512287 hasIssue "4" @default.
- W2995512287 hasLocation W29955122871 @default.
- W2995512287 hasOpenAccess W2995512287 @default.
- W2995512287 hasPrimaryLocation W29955122871 @default.
- W2995512287 hasRelatedWork W1956272037 @default.
- W2995512287 hasRelatedWork W1978004854 @default.
- W2995512287 hasRelatedWork W1991547222 @default.
- W2995512287 hasRelatedWork W2039515214 @default.
- W2995512287 hasRelatedWork W2057337671 @default.
- W2995512287 hasRelatedWork W2606717805 @default.
- W2995512287 hasRelatedWork W2748952813 @default.
- W2995512287 hasRelatedWork W2899084033 @default.
- W2995512287 hasRelatedWork W4382394123 @default.
- W2995512287 hasRelatedWork W779953516 @default.
- W2995512287 hasVolume "8" @default.
- W2995512287 isParatext "false" @default.
- W2995512287 isRetracted "false" @default.
- W2995512287 magId "2995512287" @default.
- W2995512287 workType "article" @default.