Matches in SemOpenAlex for { <https://semopenalex.org/work/W2995512905> ?p ?o ?g. }
- W2995512905 endingPage "99" @default.
- W2995512905 startingPage "99" @default.
- W2995512905 abstract "Airborne particulates are of particular significance for their human health impacts and their roles in both atmospheric radiative transfer and atmospheric chemistry. Observations of airborne particulates are typically made by environmental agencies using rather expensive instruments. Due to the expense of the instruments usually used by environment agencies, the number of sensors that can be deployed is limited. In this study we show that machine learning can be used to effectively calibrate lower cost optical particle counters. For this calibration it is critical that measurements of the atmospheric pressure, humidity, and temperature are also made." @default.
- W2995512905 created "2019-12-26" @default.
- W2995512905 creator A5006358132 @default.
- W2995512905 creator A5009343065 @default.
- W2995512905 creator A5011442676 @default.
- W2995512905 creator A5051322929 @default.
- W2995512905 creator A5061571433 @default.
- W2995512905 date "2019-12-23" @default.
- W2995512905 modified "2023-10-05" @default.
- W2995512905 title "Using Machine Learning for the Calibration of Airborne Particulate Sensors" @default.
- W2995512905 cites W1509394031 @default.
- W2995512905 cites W1981719480 @default.
- W2995512905 cites W1995341919 @default.
- W2995512905 cites W2002570697 @default.
- W2995512905 cites W2044092449 @default.
- W2995512905 cites W2073588539 @default.
- W2995512905 cites W2094244765 @default.
- W2995512905 cites W2106636041 @default.
- W2995512905 cites W2109880334 @default.
- W2995512905 cites W2110052313 @default.
- W2995512905 cites W2113242816 @default.
- W2995512905 cites W2116507044 @default.
- W2995512905 cites W2119744638 @default.
- W2995512905 cites W2125283600 @default.
- W2995512905 cites W2127510753 @default.
- W2995512905 cites W2137087705 @default.
- W2995512905 cites W2140137657 @default.
- W2995512905 cites W2140282454 @default.
- W2995512905 cites W2147867287 @default.
- W2995512905 cites W2155118487 @default.
- W2995512905 cites W2166604768 @default.
- W2995512905 cites W2167929905 @default.
- W2995512905 cites W2203332787 @default.
- W2995512905 cites W2218047931 @default.
- W2995512905 cites W2234863202 @default.
- W2995512905 cites W2247278818 @default.
- W2995512905 cites W2318698569 @default.
- W2995512905 cites W2564517107 @default.
- W2995512905 cites W2598425991 @default.
- W2995512905 cites W2734432674 @default.
- W2995512905 cites W2911964244 @default.
- W2995512905 cites W2948796520 @default.
- W2995512905 cites W2953479842 @default.
- W2995512905 cites W2953613851 @default.
- W2995512905 cites W2954388294 @default.
- W2995512905 cites W2955418198 @default.
- W2995512905 cites W2963316242 @default.
- W2995512905 cites W2969774384 @default.
- W2995512905 cites W3099666846 @default.
- W2995512905 cites W4239510810 @default.
- W2995512905 cites W4255330120 @default.
- W2995512905 doi "https://doi.org/10.3390/s20010099" @default.
- W2995512905 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6982762" @default.
- W2995512905 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31877977" @default.
- W2995512905 hasPublicationYear "2019" @default.
- W2995512905 type Work @default.
- W2995512905 sameAs 2995512905 @default.
- W2995512905 citedByCount "22" @default.
- W2995512905 countsByYear W29955129052020 @default.
- W2995512905 countsByYear W29955129052021 @default.
- W2995512905 countsByYear W29955129052022 @default.
- W2995512905 countsByYear W29955129052023 @default.
- W2995512905 crossrefType "journal-article" @default.
- W2995512905 hasAuthorship W2995512905A5006358132 @default.
- W2995512905 hasAuthorship W2995512905A5009343065 @default.
- W2995512905 hasAuthorship W2995512905A5011442676 @default.
- W2995512905 hasAuthorship W2995512905A5051322929 @default.
- W2995512905 hasAuthorship W2995512905A5061571433 @default.
- W2995512905 hasBestOaLocation W29955129051 @default.
- W2995512905 hasConcept C120665830 @default.
- W2995512905 hasConcept C121332964 @default.
- W2995512905 hasConcept C151420433 @default.
- W2995512905 hasConcept C153294291 @default.
- W2995512905 hasConcept C165838908 @default.
- W2995512905 hasConcept C178790620 @default.
- W2995512905 hasConcept C185592680 @default.
- W2995512905 hasConcept C200239111 @default.
- W2995512905 hasConcept C205649164 @default.
- W2995512905 hasConcept C24245907 @default.
- W2995512905 hasConcept C39432304 @default.
- W2995512905 hasConcept C41008148 @default.
- W2995512905 hasConcept C62520636 @default.
- W2995512905 hasConcept C62649853 @default.
- W2995512905 hasConcept C74902906 @default.
- W2995512905 hasConceptScore W2995512905C120665830 @default.
- W2995512905 hasConceptScore W2995512905C121332964 @default.
- W2995512905 hasConceptScore W2995512905C151420433 @default.
- W2995512905 hasConceptScore W2995512905C153294291 @default.
- W2995512905 hasConceptScore W2995512905C165838908 @default.
- W2995512905 hasConceptScore W2995512905C178790620 @default.
- W2995512905 hasConceptScore W2995512905C185592680 @default.
- W2995512905 hasConceptScore W2995512905C200239111 @default.
- W2995512905 hasConceptScore W2995512905C205649164 @default.
- W2995512905 hasConceptScore W2995512905C24245907 @default.
- W2995512905 hasConceptScore W2995512905C39432304 @default.
- W2995512905 hasConceptScore W2995512905C41008148 @default.
- W2995512905 hasConceptScore W2995512905C62520636 @default.
- W2995512905 hasConceptScore W2995512905C62649853 @default.