Matches in SemOpenAlex for { <https://semopenalex.org/work/W2995515875> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W2995515875 abstract "The rise in the number of active online users has subsequently increased the number of cyber abuse incidents being reported as well. Such events pose a harm to the privacy and liberty of users in the digital space. Conventionally, manual moderation and reporting mechanisms have been used to ensure that no such text is present online. However, there have been some flaws in this method including dependency on humans, increased delays and reduced data privacy. Previous approaches to automate this process have involved using supervised machine learning and traditional recurrent sequence models which tend to perform poorly on non-English text. Given the rising diversity of users being a part of the cyberspace, a flexible solution able to accommodate multilingual text is the need of the hour. Furthermore, text in colloquial languages often hold pertinent context and emotion that is lost after translation. In this paper, we propose a generative deep-learning based approach which involves the use of bidirectional transformer-based BERT architecture for cyber abuse detection across English, Hindi and code-mixed Hindi English(Hinglish) text. The proposed architecture can achieve state-of-the-art results on the code-mixed Hindi dataset in the TRAC-1 standard aggression identification task while being able to achieve very good results on the English task leaderboard as well. The results achieved are without using any ensemble-based methods or multiple models and thus prove to be a better alternative to the existing approaches. Deep learning based models which perform well on multilingual text will be able to handle a broader range of inputs and thus can prove to be crucial in cracking down on such social evils." @default.
- W2995515875 created "2019-12-26" @default.
- W2995515875 creator A5007369264 @default.
- W2995515875 creator A5025563057 @default.
- W2995515875 date "2019-10-01" @default.
- W2995515875 modified "2023-09-26" @default.
- W2995515875 title "Multilingual Cyber Abuse Detection using Advanced Transformer Architecture" @default.
- W2995515875 cites W2034757259 @default.
- W2995515875 cites W2963026768 @default.
- W2995515875 cites W3103061166 @default.
- W2995515875 doi "https://doi.org/10.1109/tencon.2019.8929493" @default.
- W2995515875 hasPublicationYear "2019" @default.
- W2995515875 type Work @default.
- W2995515875 sameAs 2995515875 @default.
- W2995515875 citedByCount "16" @default.
- W2995515875 countsByYear W29955158752020 @default.
- W2995515875 countsByYear W29955158752021 @default.
- W2995515875 countsByYear W29955158752022 @default.
- W2995515875 countsByYear W29955158752023 @default.
- W2995515875 crossrefType "proceedings-article" @default.
- W2995515875 hasAuthorship W2995515875A5007369264 @default.
- W2995515875 hasAuthorship W2995515875A5025563057 @default.
- W2995515875 hasConcept C119857082 @default.
- W2995515875 hasConcept C129792486 @default.
- W2995515875 hasConcept C154945302 @default.
- W2995515875 hasConcept C195324797 @default.
- W2995515875 hasConcept C204321447 @default.
- W2995515875 hasConcept C38652104 @default.
- W2995515875 hasConcept C41008148 @default.
- W2995515875 hasConcept C519982507 @default.
- W2995515875 hasConceptScore W2995515875C119857082 @default.
- W2995515875 hasConceptScore W2995515875C129792486 @default.
- W2995515875 hasConceptScore W2995515875C154945302 @default.
- W2995515875 hasConceptScore W2995515875C195324797 @default.
- W2995515875 hasConceptScore W2995515875C204321447 @default.
- W2995515875 hasConceptScore W2995515875C38652104 @default.
- W2995515875 hasConceptScore W2995515875C41008148 @default.
- W2995515875 hasConceptScore W2995515875C519982507 @default.
- W2995515875 hasLocation W29955158751 @default.
- W2995515875 hasOpenAccess W2995515875 @default.
- W2995515875 hasPrimaryLocation W29955158751 @default.
- W2995515875 hasRelatedWork W1997241840 @default.
- W2995515875 hasRelatedWork W2187352200 @default.
- W2995515875 hasRelatedWork W2271356425 @default.
- W2995515875 hasRelatedWork W2548740357 @default.
- W2995515875 hasRelatedWork W2796103437 @default.
- W2995515875 hasRelatedWork W3134124363 @default.
- W2995515875 hasRelatedWork W3169305685 @default.
- W2995515875 hasRelatedWork W3176644009 @default.
- W2995515875 hasRelatedWork W4287111449 @default.
- W2995515875 hasRelatedWork W4376568177 @default.
- W2995515875 isParatext "false" @default.
- W2995515875 isRetracted "false" @default.
- W2995515875 magId "2995515875" @default.
- W2995515875 workType "article" @default.