Matches in SemOpenAlex for { <https://semopenalex.org/work/W2995565720> ?p ?o ?g. }
- W2995565720 abstract "Abstract Feedforward deep convolutional neural networks (DCNNs) are, under specific conditions, matching and even surpassing human performance in object recognition in natural scenes. This performance suggests that the analysis of a loose collection of image features could support the recognition of natural object categories, without dedicated systems to solve specific visual subtasks. Research in humans however suggests that while feedforward activity may suffice for sparse scenes with isolated objects, additional visual operations (‘routines’) that aid the recognition process (e.g. segmentation or grouping) are needed for more complex scenes. Linking human visual processing to performance of DCNNs with increasing depth, we here explored if, how, and when object information is differentiated from the backgrounds they appear on. To this end, we controlled the information in both objects and backgrounds, as well as the relationship between them by adding noise, manipulating background congruence and systematically occluding parts of the image. Results indicate that with an increase in network depth, there is an increase in the distinction between object- and background information. For more shallow networks, results indicated a benefit of training on segmented objects. Overall, these results indicate that, de facto, scene segmentation can be performed by a network of sufficient depth. We conclude that the human brain could perform scene segmentation in the context of object identification without an explicit mechanism, by selecting or “binding” features that belong to the object and ignoring other features, in a manner similar to a very deep convolutional neural network." @default.
- W2995565720 created "2019-12-26" @default.
- W2995565720 creator A5005914878 @default.
- W2995565720 creator A5029015611 @default.
- W2995565720 creator A5035676810 @default.
- W2995565720 creator A5083911761 @default.
- W2995565720 creator A5087337335 @default.
- W2995565720 date "2019-12-17" @default.
- W2995565720 modified "2023-10-16" @default.
- W2995565720 title "Depth in convolutional neural networks solves scene segmentation" @default.
- W2995565720 cites W1861492603 @default.
- W2995565720 cites W1933133842 @default.
- W2995565720 cites W1969529608 @default.
- W2995565720 cites W1971017968 @default.
- W2995565720 cites W2010989369 @default.
- W2995565720 cites W2017814585 @default.
- W2995565720 cites W2027136107 @default.
- W2995565720 cites W2036123457 @default.
- W2995565720 cites W2037848247 @default.
- W2995565720 cites W2040036684 @default.
- W2995565720 cites W2041590643 @default.
- W2995565720 cites W2060551285 @default.
- W2995565720 cites W2060841692 @default.
- W2995565720 cites W2081939415 @default.
- W2995565720 cites W2097117768 @default.
- W2995565720 cites W2099163172 @default.
- W2995565720 cites W2099679614 @default.
- W2995565720 cites W2100987536 @default.
- W2995565720 cites W2106848651 @default.
- W2995565720 cites W2107719302 @default.
- W2995565720 cites W2113078411 @default.
- W2995565720 cites W2117539524 @default.
- W2995565720 cites W2120907531 @default.
- W2995565720 cites W2132172482 @default.
- W2995565720 cites W2139748113 @default.
- W2995565720 cites W2147513688 @default.
- W2995565720 cites W2149194912 @default.
- W2995565720 cites W2152913445 @default.
- W2995565720 cites W2159564241 @default.
- W2995565720 cites W2160849434 @default.
- W2995565720 cites W2161568427 @default.
- W2995565720 cites W2162110654 @default.
- W2995565720 cites W2165293155 @default.
- W2995565720 cites W2166206801 @default.
- W2995565720 cites W2168315368 @default.
- W2995565720 cites W2168616527 @default.
- W2995565720 cites W2194775991 @default.
- W2995565720 cites W2213060096 @default.
- W2995565720 cites W2328322609 @default.
- W2995565720 cites W2622085227 @default.
- W2995565720 cites W2776939120 @default.
- W2995565720 cites W2806070179 @default.
- W2995565720 cites W2912329295 @default.
- W2995565720 cites W2920989903 @default.
- W2995565720 cites W2928869317 @default.
- W2995565720 cites W2944082359 @default.
- W2995565720 cites W2949512190 @default.
- W2995565720 cites W2952938928 @default.
- W2995565720 cites W2953263739 @default.
- W2995565720 cites W3098596645 @default.
- W2995565720 doi "https://doi.org/10.1101/2019.12.16.877753" @default.
- W2995565720 hasPublicationYear "2019" @default.
- W2995565720 type Work @default.
- W2995565720 sameAs 2995565720 @default.
- W2995565720 citedByCount "1" @default.
- W2995565720 countsByYear W29955657202019 @default.
- W2995565720 crossrefType "posted-content" @default.
- W2995565720 hasAuthorship W2995565720A5005914878 @default.
- W2995565720 hasAuthorship W2995565720A5029015611 @default.
- W2995565720 hasAuthorship W2995565720A5035676810 @default.
- W2995565720 hasAuthorship W2995565720A5083911761 @default.
- W2995565720 hasAuthorship W2995565720A5087337335 @default.
- W2995565720 hasBestOaLocation W29955657201 @default.
- W2995565720 hasConcept C105795698 @default.
- W2995565720 hasConcept C124504099 @default.
- W2995565720 hasConcept C153180895 @default.
- W2995565720 hasConcept C154945302 @default.
- W2995565720 hasConcept C165064840 @default.
- W2995565720 hasConcept C166957645 @default.
- W2995565720 hasConcept C205649164 @default.
- W2995565720 hasConcept C2776151529 @default.
- W2995565720 hasConcept C2779343474 @default.
- W2995565720 hasConcept C2781238097 @default.
- W2995565720 hasConcept C31972630 @default.
- W2995565720 hasConcept C33923547 @default.
- W2995565720 hasConcept C41008148 @default.
- W2995565720 hasConcept C64876066 @default.
- W2995565720 hasConcept C81363708 @default.
- W2995565720 hasConcept C89600930 @default.
- W2995565720 hasConceptScore W2995565720C105795698 @default.
- W2995565720 hasConceptScore W2995565720C124504099 @default.
- W2995565720 hasConceptScore W2995565720C153180895 @default.
- W2995565720 hasConceptScore W2995565720C154945302 @default.
- W2995565720 hasConceptScore W2995565720C165064840 @default.
- W2995565720 hasConceptScore W2995565720C166957645 @default.
- W2995565720 hasConceptScore W2995565720C205649164 @default.
- W2995565720 hasConceptScore W2995565720C2776151529 @default.
- W2995565720 hasConceptScore W2995565720C2779343474 @default.
- W2995565720 hasConceptScore W2995565720C2781238097 @default.
- W2995565720 hasConceptScore W2995565720C31972630 @default.