Matches in SemOpenAlex for { <https://semopenalex.org/work/W2995598981> ?p ?o ?g. }
- W2995598981 abstract "Abstract Patient falls during hospitalization can lead to severe injuries and remain one of the most vexing patient-safety problems facing hospitals. They lead to increased medical care costs, lengthened hospital stays, more litigation, and even death. Existing methods and technology to address this problem mostly focus on stratifying inpatients at risk, without predicting fall severity or injuries. Here, a retrospective cohort study was designed and performed to predict the severity of inpatient falls, based on a machine learning classifier integrating multi-view ensemble learning and model-based missing data imputation method. As input, over two thousand inpatient fall patients’ demographic characteristics, diagnoses, procedural data, and bone density measurements were retrieved from the HMH clinical data warehouse from two separate time periods. The predictive classifier developed based on multi-view ensemble learning with missing values (MELMV) outperformed other three baseline models; achieved a cross-validated AUC of 0.713 (95% CI, 0.701–0.725), an AUC of 0.808 (95% CI, 0.740–0.876) on the separate testing set. Our studies show the efficacy of integrative machine-learning based classifier model in dealing with multi-source patient data, which in this case delivers robust predictive performance on the severity of patient falls. The severe fall index provided by the MELMV classifier is calculated to identify inpatients who are at risk of having severe injuries if they fall, thus triggering additional steps of intervention to prevent a harmful fall, beyond the standard-of-care procedure for all high-risk fall patients." @default.
- W2995598981 created "2019-12-26" @default.
- W2995598981 creator A5010153052 @default.
- W2995598981 creator A5015077092 @default.
- W2995598981 creator A5023416483 @default.
- W2995598981 creator A5037074792 @default.
- W2995598981 creator A5053275663 @default.
- W2995598981 creator A5059999814 @default.
- W2995598981 creator A5064622379 @default.
- W2995598981 creator A5071285426 @default.
- W2995598981 creator A5086644560 @default.
- W2995598981 creator A5087598344 @default.
- W2995598981 date "2019-12-12" @default.
- W2995598981 modified "2023-10-17" @default.
- W2995598981 title "Preventing inpatient falls with injuries using integrative machine learning prediction: a cohort study" @default.
- W2995598981 cites W1586459180 @default.
- W2995598981 cites W1970161105 @default.
- W2995598981 cites W1980264541 @default.
- W2995598981 cites W1981457167 @default.
- W2995598981 cites W1981877820 @default.
- W2995598981 cites W1981900724 @default.
- W2995598981 cites W2006617902 @default.
- W2995598981 cites W2017337590 @default.
- W2995598981 cites W2039443748 @default.
- W2995598981 cites W2043941815 @default.
- W2995598981 cites W2050520474 @default.
- W2995598981 cites W2077040258 @default.
- W2995598981 cites W2085789144 @default.
- W2995598981 cites W2086519542 @default.
- W2995598981 cites W2102252264 @default.
- W2995598981 cites W2102557508 @default.
- W2995598981 cites W2115098571 @default.
- W2995598981 cites W2118514362 @default.
- W2995598981 cites W2119549755 @default.
- W2995598981 cites W2122174233 @default.
- W2995598981 cites W2128884659 @default.
- W2995598981 cites W2158190397 @default.
- W2995598981 cites W2213982568 @default.
- W2995598981 cites W2328176404 @default.
- W2995598981 cites W2409112140 @default.
- W2995598981 cites W2508644642 @default.
- W2995598981 cites W2529734919 @default.
- W2995598981 cites W2588914603 @default.
- W2995598981 cites W3101554807 @default.
- W2995598981 cites W4292632999 @default.
- W2995598981 cites W65243549 @default.
- W2995598981 doi "https://doi.org/10.1038/s41746-019-0200-3" @default.
- W2995598981 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6908660" @default.
- W2995598981 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33303907" @default.
- W2995598981 hasPublicationYear "2019" @default.
- W2995598981 type Work @default.
- W2995598981 sameAs 2995598981 @default.
- W2995598981 citedByCount "12" @default.
- W2995598981 countsByYear W29955989812020 @default.
- W2995598981 countsByYear W29955989812021 @default.
- W2995598981 countsByYear W29955989812022 @default.
- W2995598981 countsByYear W29955989812023 @default.
- W2995598981 crossrefType "journal-article" @default.
- W2995598981 hasAuthorship W2995598981A5010153052 @default.
- W2995598981 hasAuthorship W2995598981A5015077092 @default.
- W2995598981 hasAuthorship W2995598981A5023416483 @default.
- W2995598981 hasAuthorship W2995598981A5037074792 @default.
- W2995598981 hasAuthorship W2995598981A5053275663 @default.
- W2995598981 hasAuthorship W2995598981A5059999814 @default.
- W2995598981 hasAuthorship W2995598981A5064622379 @default.
- W2995598981 hasAuthorship W2995598981A5071285426 @default.
- W2995598981 hasAuthorship W2995598981A5086644560 @default.
- W2995598981 hasAuthorship W2995598981A5087598344 @default.
- W2995598981 hasBestOaLocation W29955989811 @default.
- W2995598981 hasConcept C119857082 @default.
- W2995598981 hasConcept C126322002 @default.
- W2995598981 hasConcept C142724271 @default.
- W2995598981 hasConcept C154945302 @default.
- W2995598981 hasConcept C167135981 @default.
- W2995598981 hasConcept C194828623 @default.
- W2995598981 hasConcept C41008148 @default.
- W2995598981 hasConcept C534262118 @default.
- W2995598981 hasConcept C71924100 @default.
- W2995598981 hasConcept C72563966 @default.
- W2995598981 hasConcept C95623464 @default.
- W2995598981 hasConceptScore W2995598981C119857082 @default.
- W2995598981 hasConceptScore W2995598981C126322002 @default.
- W2995598981 hasConceptScore W2995598981C142724271 @default.
- W2995598981 hasConceptScore W2995598981C154945302 @default.
- W2995598981 hasConceptScore W2995598981C167135981 @default.
- W2995598981 hasConceptScore W2995598981C194828623 @default.
- W2995598981 hasConceptScore W2995598981C41008148 @default.
- W2995598981 hasConceptScore W2995598981C534262118 @default.
- W2995598981 hasConceptScore W2995598981C71924100 @default.
- W2995598981 hasConceptScore W2995598981C72563966 @default.
- W2995598981 hasConceptScore W2995598981C95623464 @default.
- W2995598981 hasIssue "1" @default.
- W2995598981 hasLocation W29955989811 @default.
- W2995598981 hasLocation W29955989812 @default.
- W2995598981 hasLocation W29955989813 @default.
- W2995598981 hasLocation W29955989814 @default.
- W2995598981 hasOpenAccess W2995598981 @default.
- W2995598981 hasPrimaryLocation W29955989811 @default.
- W2995598981 hasRelatedWork W2093059209 @default.
- W2995598981 hasRelatedWork W2512018286 @default.