Matches in SemOpenAlex for { <https://semopenalex.org/work/W2995680918> ?p ?o ?g. }
- W2995680918 endingPage "956" @default.
- W2995680918 startingPage "946" @default.
- W2995680918 abstract "Deep learning has attracted great attention in the medical imaging community as a promising solution for automated, fast and accurate medical image analysis, which is mandatory for quality healthcare. Convolutional neural networks and its variants have become the most preferred and widely used deep learning models in medical image analysis. In this paper, concise overviews of the modern deep learning models applied in medical image analysis are provided and the key tasks performed by deep learning models, i.e. classification, segmentation, retrieval, detection, and registration are reviewed in detail. Some recent researches have shown that deep learning models can outperform medical experts in certain tasks. With the significant breakthroughs made by deep learning methods, it is expected that patients will soon be able to safely and conveniently interact with AI-based medical systems and such intelligent systems will actually improve patient healthcare. There are various complexities and challenges involved in deep learning-based medical image analysis, such as limited datasets. But researchers are actively working in this area to mitigate these challenges and further improve health care with AI." @default.
- W2995680918 created "2019-12-26" @default.
- W2995680918 creator A5037898063 @default.
- W2995680918 creator A5064767611 @default.
- W2995680918 creator A5084169027 @default.
- W2995680918 creator A5085770935 @default.
- W2995680918 creator A5090838924 @default.
- W2995680918 date "2020-10-18" @default.
- W2995680918 modified "2023-10-03" @default.
- W2995680918 title "Deep Learning: A Breakthrough in Medical Imaging" @default.
- W2995680918 cites W1534216133 @default.
- W2995680918 cites W1559611879 @default.
- W2995680918 cites W1727290854 @default.
- W2995680918 cites W197203075 @default.
- W2995680918 cites W1972498024 @default.
- W2995680918 cites W2002016471 @default.
- W2995680918 cites W2027946489 @default.
- W2995680918 cites W2028891854 @default.
- W2995680918 cites W2040870580 @default.
- W2995680918 cites W2064675550 @default.
- W2995680918 cites W2067548558 @default.
- W2995680918 cites W2076063813 @default.
- W2995680918 cites W2079735306 @default.
- W2995680918 cites W2101771332 @default.
- W2995680918 cites W2112796928 @default.
- W2995680918 cites W2117539524 @default.
- W2995680918 cites W2121289914 @default.
- W2995680918 cites W2124290836 @default.
- W2995680918 cites W2136922672 @default.
- W2995680918 cites W2147800946 @default.
- W2995680918 cites W2157331557 @default.
- W2995680918 cites W2163973397 @default.
- W2995680918 cites W2164861810 @default.
- W2995680918 cites W2169805405 @default.
- W2995680918 cites W22040386 @default.
- W2995680918 cites W2238108400 @default.
- W2995680918 cites W2257979135 @default.
- W2995680918 cites W2259130004 @default.
- W2995680918 cites W2275865840 @default.
- W2995680918 cites W2284126738 @default.
- W2995680918 cites W2321283863 @default.
- W2995680918 cites W2327832663 @default.
- W2995680918 cites W2339885376 @default.
- W2995680918 cites W2342591535 @default.
- W2995680918 cites W2344328023 @default.
- W2995680918 cites W2493683088 @default.
- W2995680918 cites W2502390809 @default.
- W2995680918 cites W2521068627 @default.
- W2995680918 cites W2522528264 @default.
- W2995680918 cites W2524916860 @default.
- W2995680918 cites W2526653212 @default.
- W2995680918 cites W2526832219 @default.
- W2995680918 cites W2532750509 @default.
- W2995680918 cites W2559553341 @default.
- W2995680918 cites W2581082771 @default.
- W2995680918 cites W2592929672 @default.
- W2995680918 cites W2606546398 @default.
- W2995680918 cites W2620110959 @default.
- W2995680918 cites W2620578070 @default.
- W2995680918 cites W2621028221 @default.
- W2995680918 cites W2626527744 @default.
- W2995680918 cites W2664267452 @default.
- W2995680918 cites W2742486522 @default.
- W2995680918 cites W2752747624 @default.
- W2995680918 cites W2769848455 @default.
- W2995680918 cites W2774320778 @default.
- W2995680918 cites W2788239209 @default.
- W2995680918 cites W2793272303 @default.
- W2995680918 cites W2799291955 @default.
- W2995680918 cites W2810301424 @default.
- W2995680918 cites W2883574295 @default.
- W2995680918 cites W2885824038 @default.
- W2995680918 cites W2890455271 @default.
- W2995680918 cites W2900936384 @default.
- W2995680918 cites W2919115771 @default.
- W2995680918 cites W2920073091 @default.
- W2995680918 cites W2947272707 @default.
- W2995680918 cites W2951985572 @default.
- W2995680918 cites W2963637377 @default.
- W2995680918 cites W2964166886 @default.
- W2995680918 cites W3098234188 @default.
- W2995680918 cites W3098900881 @default.
- W2995680918 cites W3104258355 @default.
- W2995680918 cites W4242623661 @default.
- W2995680918 doi "https://doi.org/10.2174/1573405615666191219100824" @default.
- W2995680918 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33081657" @default.
- W2995680918 hasPublicationYear "2020" @default.
- W2995680918 type Work @default.
- W2995680918 sameAs 2995680918 @default.
- W2995680918 citedByCount "20" @default.
- W2995680918 countsByYear W29956809182021 @default.
- W2995680918 countsByYear W29956809182022 @default.
- W2995680918 countsByYear W29956809182023 @default.
- W2995680918 crossrefType "journal-article" @default.
- W2995680918 hasAuthorship W2995680918A5037898063 @default.
- W2995680918 hasAuthorship W2995680918A5064767611 @default.
- W2995680918 hasAuthorship W2995680918A5084169027 @default.
- W2995680918 hasAuthorship W2995680918A5085770935 @default.