Matches in SemOpenAlex for { <https://semopenalex.org/work/W2995718905> ?p ?o ?g. }
- W2995718905 endingPage "3038" @default.
- W2995718905 startingPage "3038" @default.
- W2995718905 abstract "China has been facing serious land degradation and desertification in its north and northwest arid and semi-arid areas. Monitoring the dynamics of percentage vegetation cover (PVC) using remote sensing imagery in these areas has become critical. However, because these areas are large, remote, and sparsely populated, and also because of the existence of mixed pixels, there have been no accurate and cost-effective methods available for this purpose. Spectral unmixing methods are a good alternative as they do not need field data and are low cost. However, traditional linear spectral unmixing (LSU) methods lack the ability to capture the characteristics of spectral reflectance and scattering from endmembers and their interactions within mixed pixels. Moreover, existing nonlinear spectral unmixing methods, such as random forest (RF) and radial basis function neural network (RBFNN), are often costly because they require field measurements of PVC from a large number of training samples. In this study, a cost-effective approach to mapping PVC in arid and semi-arid areas was proposed. A method for selection and purification of endmembers mainly based on Landsat imagery was first presented. A probability-based spectral unmixing analysis (PBSUA) and a probability-based optimized k nearest-neighbors (PBOkNN) approach were then developed to improve the mapping of PVC in Duolun County in Inner Mongolia, China, using Landsat 8 images and field data from 920 sample plots. The proposed PBSUA and PBOkNN methods were further validated in terms of accuracy and cost-effectiveness by comparison with two LSU methods, with and without purification of endmembers, and two nonlinear approaches, RF and RBFNN. The cost-effectiveness was defined as the reciprocal of cost timing relative root mean square error (RRMSE). The results showed that (1) Probability-based spectral unmixing analysis (PBSUA) was most cost-effective and increased the cost-effectiveness by 29.3% 29.3%, 33.5%, 50.8%, and 53.0% compared with two LSU methods, PBOkNN, RF, and RBFNN, respectively; (2) PBSUA, RF, and RBFNN gave RRMSE values of 22.9%, 21.8%, and 22.8%, respectively, which were not significantly different from each other at the significance level of 0.05. Compatibly, PBOkNN and LSU methods with and without purification of endmembers resulted in significantly greater RRMSE values of 27.5%, 32.4%, and 43.3%, respectively; (3) the average estimates of the sample plots and predicted maps from PBSUA, PBOkNN, RF, and RBFNN fell in the confidence interval of the test plot data, but those from two LSU methods did not, although the LSU with purification of endmembers improved the PVC estimation accuracy by 25.2% compared with the LSU without purification of endmembers. Thus, this study indicated that the proposed PBSUA had great potential for cost-effectively mapping PVC in arid and semi-arid areas." @default.
- W2995718905 created "2019-12-26" @default.
- W2995718905 creator A5005097745 @default.
- W2995718905 creator A5026752395 @default.
- W2995718905 creator A5027470092 @default.
- W2995718905 creator A5053192302 @default.
- W2995718905 creator A5074083183 @default.
- W2995718905 date "2019-12-16" @default.
- W2995718905 modified "2023-09-26" @default.
- W2995718905 title "A Probability-Based Spectral Unmixing Analysis for Mapping Percentage Vegetation Cover of Arid and Semi-Arid Areas" @default.
- W2995718905 cites W1898601755 @default.
- W2995718905 cites W1902016676 @default.
- W2995718905 cites W1949713295 @default.
- W2995718905 cites W1957094454 @default.
- W2995718905 cites W1963659868 @default.
- W2995718905 cites W1970102256 @default.
- W2995718905 cites W1987324141 @default.
- W2995718905 cites W1992050370 @default.
- W2995718905 cites W2003644107 @default.
- W2995718905 cites W2006069992 @default.
- W2995718905 cites W2010469163 @default.
- W2995718905 cites W2014741087 @default.
- W2995718905 cites W2016297776 @default.
- W2995718905 cites W2024006116 @default.
- W2995718905 cites W2032541606 @default.
- W2995718905 cites W2034268775 @default.
- W2995718905 cites W2043273487 @default.
- W2995718905 cites W2052031343 @default.
- W2995718905 cites W2052365813 @default.
- W2995718905 cites W2054296973 @default.
- W2995718905 cites W2059976262 @default.
- W2995718905 cites W2068094410 @default.
- W2995718905 cites W2072352253 @default.
- W2995718905 cites W2072557973 @default.
- W2995718905 cites W2078222544 @default.
- W2995718905 cites W2081809992 @default.
- W2995718905 cites W2109965565 @default.
- W2995718905 cites W2110588562 @default.
- W2995718905 cites W2123061447 @default.
- W2995718905 cites W2128462828 @default.
- W2995718905 cites W2136635809 @default.
- W2995718905 cites W2144881411 @default.
- W2995718905 cites W2150316298 @default.
- W2995718905 cites W2155096269 @default.
- W2995718905 cites W2155550504 @default.
- W2995718905 cites W2261059368 @default.
- W2995718905 cites W2263022548 @default.
- W2995718905 cites W2285717070 @default.
- W2995718905 cites W2304910534 @default.
- W2995718905 cites W2344705075 @default.
- W2995718905 cites W2402292288 @default.
- W2995718905 cites W2462444404 @default.
- W2995718905 cites W2464273353 @default.
- W2995718905 cites W2470315301 @default.
- W2995718905 cites W2471406164 @default.
- W2995718905 cites W2530872033 @default.
- W2995718905 cites W2557402288 @default.
- W2995718905 cites W2567487372 @default.
- W2995718905 cites W2587515503 @default.
- W2995718905 cites W2593957790 @default.
- W2995718905 cites W2739611913 @default.
- W2995718905 cites W2768539572 @default.
- W2995718905 cites W2781813733 @default.
- W2995718905 cites W2793927960 @default.
- W2995718905 cites W2886241460 @default.
- W2995718905 cites W289032787 @default.
- W2995718905 cites W3122463936 @default.
- W2995718905 doi "https://doi.org/10.3390/rs11243038" @default.
- W2995718905 hasPublicationYear "2019" @default.
- W2995718905 type Work @default.
- W2995718905 sameAs 2995718905 @default.
- W2995718905 citedByCount "4" @default.
- W2995718905 countsByYear W29957189052021 @default.
- W2995718905 countsByYear W29957189052022 @default.
- W2995718905 countsByYear W29957189052023 @default.
- W2995718905 crossrefType "journal-article" @default.
- W2995718905 hasAuthorship W2995718905A5005097745 @default.
- W2995718905 hasAuthorship W2995718905A5026752395 @default.
- W2995718905 hasAuthorship W2995718905A5027470092 @default.
- W2995718905 hasAuthorship W2995718905A5053192302 @default.
- W2995718905 hasAuthorship W2995718905A5074083183 @default.
- W2995718905 hasBestOaLocation W29957189051 @default.
- W2995718905 hasConcept C142724271 @default.
- W2995718905 hasConcept C150772632 @default.
- W2995718905 hasConcept C154945302 @default.
- W2995718905 hasConcept C159078339 @default.
- W2995718905 hasConcept C160633673 @default.
- W2995718905 hasConcept C18903297 @default.
- W2995718905 hasConcept C205649164 @default.
- W2995718905 hasConcept C2776133958 @default.
- W2995718905 hasConcept C33559203 @default.
- W2995718905 hasConcept C39432304 @default.
- W2995718905 hasConcept C41008148 @default.
- W2995718905 hasConcept C58237817 @default.
- W2995718905 hasConcept C62649853 @default.
- W2995718905 hasConcept C71924100 @default.
- W2995718905 hasConcept C86803240 @default.
- W2995718905 hasConceptScore W2995718905C142724271 @default.