Matches in SemOpenAlex for { <https://semopenalex.org/work/W2995722820> ?p ?o ?g. }
- W2995722820 endingPage "45" @default.
- W2995722820 startingPage "27" @default.
- W2995722820 abstract "Abstract In this paper we tackle the problem of vehicle re-identification in a camera network utilizing triplet embeddings. Re-identification is the problem of matching appearances of objects across different cameras. With the proliferation of surveillance cameras enabling smart and safer cities, there is an ever-increasing need to re-identify vehicles across cameras. Typical challenges arising in smart city scenarios include variations of viewpoints, illumination and self occlusions. Most successful approaches for re-identification involve (deep) learning an embedding space such that the vehicles of same identities are projected closer to one another, compared to the vehicles representing different identities. Popular loss functions for learning an embedding (space) include contrastive or triplet loss. In this paper we provide an extensive evaluation of triplet loss applied to vehicle re-identification and demonstrate that using the recently proposed sampling approaches for mining informative data points outperform most of the existing state-of-the-art approaches for vehicle re-identification. Compared to most existing state-of-the-art approaches, our approach is simpler and more straightforward for training utilizing only identity-level annotations, along with one of the smallest published embedding dimensions for efficient inference. Furthermore in this work we introduce a formal evaluation of a triplet sampling variant (batch sample) into the re-identification literature. In addition to the conference version [24], this submission adds extensive experiments on new released datasets, cross domain evaluations and ablation studies." @default.
- W2995722820 created "2019-12-26" @default.
- W2995722820 creator A5044031773 @default.
- W2995722820 creator A5049814747 @default.
- W2995722820 creator A5066028669 @default.
- W2995722820 creator A5090179838 @default.
- W2995722820 date "2019-12-11" @default.
- W2995722820 modified "2023-10-05" @default.
- W2995722820 title "A Strong and Efficient Baseline for Vehicle Re-Identification Using Deep Triplet Embedding" @default.
- W2995722820 cites W1549083695 @default.
- W2995722820 cites W1949591461 @default.
- W2995722820 cites W196211074 @default.
- W2995722820 cites W1979260620 @default.
- W2995722820 cites W2064675550 @default.
- W2995722820 cites W2088801782 @default.
- W2995722820 cites W2108598243 @default.
- W2995722820 cites W2113609219 @default.
- W2995722820 cites W2127589108 @default.
- W2995722820 cites W2194775991 @default.
- W2995722820 cites W2294126139 @default.
- W2995722820 cites W2300840837 @default.
- W2995722820 cites W2316212923 @default.
- W2995722820 cites W2339172597 @default.
- W2995722820 cites W2342611082 @default.
- W2995722820 cites W2470322391 @default.
- W2995722820 cites W2475242006 @default.
- W2995722820 cites W2495961871 @default.
- W2995722820 cites W2512434173 @default.
- W2995722820 cites W2562308138 @default.
- W2995722820 cites W2605117450 @default.
- W2995722820 cites W2739491435 @default.
- W2995722820 cites W2765100849 @default.
- W2995722820 cites W2776879428 @default.
- W2995722820 cites W2779954854 @default.
- W2995722820 cites W2788212895 @default.
- W2995722820 cites W2789546350 @default.
- W2995722820 cites W2799251491 @default.
- W2995722820 cites W2802810579 @default.
- W2995722820 cites W2889237755 @default.
- W2995722820 cites W2953759675 @default.
- W2995722820 cites W2962923976 @default.
- W2995722820 cites W2963775347 @default.
- W2995722820 cites W2963977416 @default.
- W2995722820 cites W3098744844 @default.
- W2995722820 cites W3099206234 @default.
- W2995722820 doi "https://doi.org/10.2478/jaiscr-2020-0003" @default.
- W2995722820 hasPublicationYear "2019" @default.
- W2995722820 type Work @default.
- W2995722820 sameAs 2995722820 @default.
- W2995722820 citedByCount "21" @default.
- W2995722820 countsByYear W29957228202020 @default.
- W2995722820 countsByYear W29957228202021 @default.
- W2995722820 countsByYear W29957228202022 @default.
- W2995722820 countsByYear W29957228202023 @default.
- W2995722820 crossrefType "journal-article" @default.
- W2995722820 hasAuthorship W2995722820A5044031773 @default.
- W2995722820 hasAuthorship W2995722820A5049814747 @default.
- W2995722820 hasAuthorship W2995722820A5066028669 @default.
- W2995722820 hasAuthorship W2995722820A5090179838 @default.
- W2995722820 hasBestOaLocation W29957228201 @default.
- W2995722820 hasConcept C105795698 @default.
- W2995722820 hasConcept C108583219 @default.
- W2995722820 hasConcept C116834253 @default.
- W2995722820 hasConcept C119857082 @default.
- W2995722820 hasConcept C121332964 @default.
- W2995722820 hasConcept C124101348 @default.
- W2995722820 hasConcept C134306372 @default.
- W2995722820 hasConcept C142362112 @default.
- W2995722820 hasConcept C153349607 @default.
- W2995722820 hasConcept C154945302 @default.
- W2995722820 hasConcept C165064840 @default.
- W2995722820 hasConcept C24890656 @default.
- W2995722820 hasConcept C2776035091 @default.
- W2995722820 hasConcept C2776214188 @default.
- W2995722820 hasConcept C2778355321 @default.
- W2995722820 hasConcept C31972630 @default.
- W2995722820 hasConcept C33923547 @default.
- W2995722820 hasConcept C36503486 @default.
- W2995722820 hasConcept C41008148 @default.
- W2995722820 hasConcept C41608201 @default.
- W2995722820 hasConcept C59822182 @default.
- W2995722820 hasConcept C86803240 @default.
- W2995722820 hasConceptScore W2995722820C105795698 @default.
- W2995722820 hasConceptScore W2995722820C108583219 @default.
- W2995722820 hasConceptScore W2995722820C116834253 @default.
- W2995722820 hasConceptScore W2995722820C119857082 @default.
- W2995722820 hasConceptScore W2995722820C121332964 @default.
- W2995722820 hasConceptScore W2995722820C124101348 @default.
- W2995722820 hasConceptScore W2995722820C134306372 @default.
- W2995722820 hasConceptScore W2995722820C142362112 @default.
- W2995722820 hasConceptScore W2995722820C153349607 @default.
- W2995722820 hasConceptScore W2995722820C154945302 @default.
- W2995722820 hasConceptScore W2995722820C165064840 @default.
- W2995722820 hasConceptScore W2995722820C24890656 @default.
- W2995722820 hasConceptScore W2995722820C2776035091 @default.
- W2995722820 hasConceptScore W2995722820C2776214188 @default.
- W2995722820 hasConceptScore W2995722820C2778355321 @default.
- W2995722820 hasConceptScore W2995722820C31972630 @default.