Matches in SemOpenAlex for { <https://semopenalex.org/work/W2995735646> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2995735646 abstract "The data generated by DNA microarray technology can be used to predict and classify genes taken from certain tissues in humans to be classified as cancer or not. Microarray data consists of thousands of variables, but limited data is available. Support Vector Machine (SVM) is a supervised learning method that can be used for classification on the high-dimensional dataset. There are two problems in SVM classifier that influence the classification accuracy, which are tuning SVM parameters and selecting the best features subset to the SVM classifier. Several approaches have been carried out for the feature selection process and tuning SVM parameter, including a wrapper-based approach. The wrapper-based algorithm used in this research is Crazy Particle Swarm Optimization (CRAZYPSO) and Ant Colony Optimization (ACO). Both algorithms are the computational intelligence-based algorithm that can be used to solve the optimization problems, such as feature selection and parameter optimization. These algorithms are inspired by animal behavior in the real world. CRAZYPSO calculations are very simple compared to other optimization algorithms. While ACO has several advantages, such as strong robustness, well-distributed computing mechanism and easily combined with other methods. This study wants to compare the CRAZYPSO and ACO algorithm in the case of microarray data classification. The microarray datasets used in this study are the prostate dataset and colon dataset. This study uses k-fold cross-validation accuracy to compare the CRAZYPSO and ACO algorithm in the case of microarray data classification using Support Vector Machine. The result shows that the ACO algorithm gives a better result in feature selection than the CRAZYPSO algorithm with higher accuracy rate and less selected features. This study also shows that the SVM parameter optimized using ACO algorithm gives higher classification accuracy rate than parameter optimized using CRAZYPSO algorithm." @default.
- W2995735646 created "2019-12-26" @default.
- W2995735646 creator A5010583900 @default.
- W2995735646 creator A5030286370 @default.
- W2995735646 creator A5058928914 @default.
- W2995735646 creator A5091229643 @default.
- W2995735646 date "2019-01-01" @default.
- W2995735646 modified "2023-10-14" @default.
- W2995735646 title "Ant colony optimization and crazy particle swarm optimization for support vector support machine classification on high-dimensional dataset" @default.
- W2995735646 cites W1984144394 @default.
- W2995735646 cites W2038978143 @default.
- W2995735646 cites W2113872548 @default.
- W2995735646 cites W2159400887 @default.
- W2995735646 cites W2617800229 @default.
- W2995735646 cites W2890190333 @default.
- W2995735646 doi "https://doi.org/10.1063/1.5139759" @default.
- W2995735646 hasPublicationYear "2019" @default.
- W2995735646 type Work @default.
- W2995735646 sameAs 2995735646 @default.
- W2995735646 citedByCount "0" @default.
- W2995735646 crossrefType "proceedings-article" @default.
- W2995735646 hasAuthorship W2995735646A5010583900 @default.
- W2995735646 hasAuthorship W2995735646A5030286370 @default.
- W2995735646 hasAuthorship W2995735646A5058928914 @default.
- W2995735646 hasAuthorship W2995735646A5091229643 @default.
- W2995735646 hasBestOaLocation W29957356461 @default.
- W2995735646 hasConcept C104317684 @default.
- W2995735646 hasConcept C109718341 @default.
- W2995735646 hasConcept C110083411 @default.
- W2995735646 hasConcept C11413529 @default.
- W2995735646 hasConcept C119857082 @default.
- W2995735646 hasConcept C12267149 @default.
- W2995735646 hasConcept C124101348 @default.
- W2995735646 hasConcept C148483581 @default.
- W2995735646 hasConcept C153180895 @default.
- W2995735646 hasConcept C154945302 @default.
- W2995735646 hasConcept C185592680 @default.
- W2995735646 hasConcept C40128228 @default.
- W2995735646 hasConcept C41008148 @default.
- W2995735646 hasConcept C55493867 @default.
- W2995735646 hasConcept C63479239 @default.
- W2995735646 hasConcept C85617194 @default.
- W2995735646 hasConcept C95623464 @default.
- W2995735646 hasConceptScore W2995735646C104317684 @default.
- W2995735646 hasConceptScore W2995735646C109718341 @default.
- W2995735646 hasConceptScore W2995735646C110083411 @default.
- W2995735646 hasConceptScore W2995735646C11413529 @default.
- W2995735646 hasConceptScore W2995735646C119857082 @default.
- W2995735646 hasConceptScore W2995735646C12267149 @default.
- W2995735646 hasConceptScore W2995735646C124101348 @default.
- W2995735646 hasConceptScore W2995735646C148483581 @default.
- W2995735646 hasConceptScore W2995735646C153180895 @default.
- W2995735646 hasConceptScore W2995735646C154945302 @default.
- W2995735646 hasConceptScore W2995735646C185592680 @default.
- W2995735646 hasConceptScore W2995735646C40128228 @default.
- W2995735646 hasConceptScore W2995735646C41008148 @default.
- W2995735646 hasConceptScore W2995735646C55493867 @default.
- W2995735646 hasConceptScore W2995735646C63479239 @default.
- W2995735646 hasConceptScore W2995735646C85617194 @default.
- W2995735646 hasConceptScore W2995735646C95623464 @default.
- W2995735646 hasLocation W29957356461 @default.
- W2995735646 hasOpenAccess W2995735646 @default.
- W2995735646 hasPrimaryLocation W29957356461 @default.
- W2995735646 hasRelatedWork W1489281615 @default.
- W2995735646 hasRelatedWork W2041636156 @default.
- W2995735646 hasRelatedWork W2120008580 @default.
- W2995735646 hasRelatedWork W2160451891 @default.
- W2995735646 hasRelatedWork W3082258531 @default.
- W2995735646 hasRelatedWork W3105251098 @default.
- W2995735646 hasRelatedWork W3200179079 @default.
- W2995735646 hasRelatedWork W4291701050 @default.
- W2995735646 hasRelatedWork W635603759 @default.
- W2995735646 hasRelatedWork W2345184372 @default.
- W2995735646 isParatext "false" @default.
- W2995735646 isRetracted "false" @default.
- W2995735646 magId "2995735646" @default.
- W2995735646 workType "article" @default.