Matches in SemOpenAlex for { <https://semopenalex.org/work/W2995836609> ?p ?o ?g. }
- W2995836609 endingPage "260" @default.
- W2995836609 startingPage "195" @default.
- W2995836609 abstract "Let $X^N = (X_1^N,dots, X^N_d)$ be a d-tuple of $Ntimes N$ independent GUE random matrices and $Z^{NM}$ be any family of deterministic matrices in $mathbb{M}_N(mathbb{C})otimes mathbb{M}_M(mathbb{C})$. Let $P$ be a self-adjoint non-commutative polynomial. A seminal work of Voiculescu shows that the empirical measure of the eigenvalues of $P(X^N)$ converges towards a deterministic measure defined thanks to free probability theory. Let now $f$ be a smooth function, the main technical result of this paper is a precise bound of the difference between the expectation of $$frac{1}{MN}text{Tr}left( f(P(X^Notimes I_M,Z^{NM})) right)$$ and its limit when $N$ goes to infinity. If $f$ is six times differentiable, we show that it is bounded by $M^2leftVert frightVert_{mathcal{C}^6}N^{-2}$. As a corollary we obtain a new proof of a result of Haagerup and Thorbjo rnsen, later developed by Male, which gives sufficient conditions for the operator norm of a polynomial evaluated in $(X^N,Z^{NM},{Z^{NM}}^*)$ to converge almost surely towards its free limit. Restricting ourselves to polynomials in independent GUE matrices, we give concentration estimates on the largest eingenvalue of these polynomials around their free limit. A direct consequence of these inequalities is that there exists some $beta>0$ such that for any $varepsilon_1<3+beta)^{-1}$ and $varepsilon_2<1/4$, almost surely for $N$ large enough, $$-frac{1}{N^{varepsilon_1}} | P(X^N)| - leftVert P(x)rightVert leq frac{1}{N^{varepsilon_2}}.$$ Finally if $X^N$ and $Y^{M_N}$ are independent and $M_N = o(N^{1/3})$, then almost surely, the norm of any polynomial in $(X^Notimes I_{M_N},I_Notimes Y^{M_N})$ converges almost surely towards its free limit. This result is an improvement of a Theorem of Pisier, who was himself using estimates from Haagerup and Thorbjo rnsen, where $M_N$ had size $o(N^{1/4})$." @default.
- W2995836609 created "2019-12-26" @default.
- W2995836609 creator A5038591719 @default.
- W2995836609 creator A5050900417 @default.
- W2995836609 creator A5082190849 @default.
- W2995836609 date "2022-01-01" @default.
- W2995836609 modified "2023-09-25" @default.
- W2995836609 title "On the operator norm of non-commutative polynomials in deterministic matrices and iid GUE matrices" @default.
- W2995836609 cites W1497259790 @default.
- W2995836609 cites W1533233993 @default.
- W2995836609 cites W153850935 @default.
- W2995836609 cites W2009179566 @default.
- W2995836609 cites W2013992162 @default.
- W2995836609 cites W2018040731 @default.
- W2995836609 cites W2022432807 @default.
- W2995836609 cites W2034384973 @default.
- W2995836609 cites W2035501532 @default.
- W2995836609 cites W2046514403 @default.
- W2995836609 cites W2051302879 @default.
- W2995836609 cites W2063822729 @default.
- W2995836609 cites W2088164510 @default.
- W2995836609 cites W2088371690 @default.
- W2995836609 cites W2125052248 @default.
- W2995836609 cites W2143803455 @default.
- W2995836609 cites W2154725178 @default.
- W2995836609 cites W2164746035 @default.
- W2995836609 cites W2499952289 @default.
- W2995836609 cites W2798335992 @default.
- W2995836609 cites W2799499928 @default.
- W2995836609 cites W2963264547 @default.
- W2995836609 cites W2963432094 @default.
- W2995836609 cites W3100470063 @default.
- W2995836609 cites W3103766153 @default.
- W2995836609 cites W3103850130 @default.
- W2995836609 cites W591099569 @default.
- W2995836609 cites W653925602 @default.
- W2995836609 doi "https://doi.org/10.4310/cjm.2022.v10.n1.a3" @default.
- W2995836609 hasPublicationYear "2022" @default.
- W2995836609 type Work @default.
- W2995836609 sameAs 2995836609 @default.
- W2995836609 citedByCount "7" @default.
- W2995836609 countsByYear W29958366092021 @default.
- W2995836609 countsByYear W29958366092022 @default.
- W2995836609 countsByYear W29958366092023 @default.
- W2995836609 crossrefType "journal-article" @default.
- W2995836609 hasAuthorship W2995836609A5038591719 @default.
- W2995836609 hasAuthorship W2995836609A5050900417 @default.
- W2995836609 hasAuthorship W2995836609A5082190849 @default.
- W2995836609 hasBestOaLocation W29958366091 @default.
- W2995836609 hasConcept C104317684 @default.
- W2995836609 hasConcept C121332964 @default.
- W2995836609 hasConcept C136119220 @default.
- W2995836609 hasConcept C158448853 @default.
- W2995836609 hasConcept C158693339 @default.
- W2995836609 hasConcept C17020691 @default.
- W2995836609 hasConcept C17744445 @default.
- W2995836609 hasConcept C183778304 @default.
- W2995836609 hasConcept C185592680 @default.
- W2995836609 hasConcept C191795146 @default.
- W2995836609 hasConcept C199539241 @default.
- W2995836609 hasConcept C202444582 @default.
- W2995836609 hasConcept C33923547 @default.
- W2995836609 hasConcept C43929395 @default.
- W2995836609 hasConcept C55493867 @default.
- W2995836609 hasConcept C62520636 @default.
- W2995836609 hasConcept C68386474 @default.
- W2995836609 hasConcept C86339819 @default.
- W2995836609 hasConcept C92207270 @default.
- W2995836609 hasConceptScore W2995836609C104317684 @default.
- W2995836609 hasConceptScore W2995836609C121332964 @default.
- W2995836609 hasConceptScore W2995836609C136119220 @default.
- W2995836609 hasConceptScore W2995836609C158448853 @default.
- W2995836609 hasConceptScore W2995836609C158693339 @default.
- W2995836609 hasConceptScore W2995836609C17020691 @default.
- W2995836609 hasConceptScore W2995836609C17744445 @default.
- W2995836609 hasConceptScore W2995836609C183778304 @default.
- W2995836609 hasConceptScore W2995836609C185592680 @default.
- W2995836609 hasConceptScore W2995836609C191795146 @default.
- W2995836609 hasConceptScore W2995836609C199539241 @default.
- W2995836609 hasConceptScore W2995836609C202444582 @default.
- W2995836609 hasConceptScore W2995836609C33923547 @default.
- W2995836609 hasConceptScore W2995836609C43929395 @default.
- W2995836609 hasConceptScore W2995836609C55493867 @default.
- W2995836609 hasConceptScore W2995836609C62520636 @default.
- W2995836609 hasConceptScore W2995836609C68386474 @default.
- W2995836609 hasConceptScore W2995836609C86339819 @default.
- W2995836609 hasConceptScore W2995836609C92207270 @default.
- W2995836609 hasIssue "1" @default.
- W2995836609 hasLocation W29958366091 @default.
- W2995836609 hasLocation W29958366092 @default.
- W2995836609 hasLocation W29958366093 @default.
- W2995836609 hasLocation W29958366094 @default.
- W2995836609 hasLocation W29958366095 @default.
- W2995836609 hasOpenAccess W2995836609 @default.
- W2995836609 hasPrimaryLocation W29958366091 @default.
- W2995836609 hasRelatedWork W1954846941 @default.
- W2995836609 hasRelatedWork W2058299141 @default.
- W2995836609 hasRelatedWork W2061776474 @default.