Matches in SemOpenAlex for { <https://semopenalex.org/work/W2995847727> ?p ?o ?g. }
- W2995847727 endingPage "117" @default.
- W2995847727 startingPage "105" @default.
- W2995847727 abstract "This chapter discusses machine learning (ML) as a means to improve energy efficiency (EE) of wireless networks. In this sense, it reviews the most common ML approaches with focus on the maximization of EE. The chapter first gives a brief definition of self-organizing networks (SONs) and some related solutions involving ML algorithms in the context of EE. SONs can be divided into three main branches: self-configuration, self-optimization, and self-healing, together denoted as self-x functions. The chapter illustrates some applications of SONs in cellular networks, highlighting the three major self-x branches and the common associated use cases. In this context, ML techniques can certainly improve a SON, allowing the network to adapt by observing its current status, and use such experience to adjust parameters in future actions. The chapter also presents an overview of ML techniques applied to more specific topics such as resource allocation, traffic prediction, and cognitive radio networks." @default.
- W2995847727 created "2019-12-26" @default.
- W2995847727 creator A5009789209 @default.
- W2995847727 creator A5018047770 @default.
- W2995847727 creator A5067391848 @default.
- W2995847727 creator A5076534518 @default.
- W2995847727 creator A5085087483 @default.
- W2995847727 date "2019-12-13" @default.
- W2995847727 modified "2023-09-25" @default.
- W2995847727 title "Machine Learning in Energy Efficiency Optimization" @default.
- W2995847727 cites W1497398457 @default.
- W2995847727 cites W1535235023 @default.
- W2995847727 cites W1963821412 @default.
- W2995847727 cites W2004643722 @default.
- W2995847727 cites W2048570986 @default.
- W2995847727 cites W2082050689 @default.
- W2995847727 cites W2088714134 @default.
- W2995847727 cites W2094989061 @default.
- W2995847727 cites W2102678435 @default.
- W2995847727 cites W2108991453 @default.
- W2995847727 cites W2112170521 @default.
- W2995847727 cites W2115400030 @default.
- W2995847727 cites W2117014495 @default.
- W2995847727 cites W2122658093 @default.
- W2995847727 cites W2140448150 @default.
- W2995847727 cites W2140516799 @default.
- W2995847727 cites W2142405857 @default.
- W2995847727 cites W2151854870 @default.
- W2995847727 cites W2152481521 @default.
- W2995847727 cites W2169061815 @default.
- W2995847727 cites W2211148590 @default.
- W2995847727 cites W2268751503 @default.
- W2995847727 cites W2281611560 @default.
- W2995847727 cites W2294599283 @default.
- W2995847727 cites W2343633521 @default.
- W2995847727 cites W2468468461 @default.
- W2995847727 cites W2540567230 @default.
- W2995847727 cites W2551175768 @default.
- W2995847727 cites W2554167127 @default.
- W2995847727 cites W2561773934 @default.
- W2995847727 cites W2610853759 @default.
- W2995847727 cites W2623190248 @default.
- W2995847727 cites W2734408173 @default.
- W2995847727 cites W2735793369 @default.
- W2995847727 cites W2742537553 @default.
- W2995847727 cites W2768671728 @default.
- W2995847727 cites W2769644800 @default.
- W2995847727 cites W2782200003 @default.
- W2995847727 cites W2784307620 @default.
- W2995847727 cites W2799343071 @default.
- W2995847727 cites W2803132538 @default.
- W2995847727 cites W2810125946 @default.
- W2995847727 cites W2963020121 @default.
- W2995847727 cites W2963615009 @default.
- W2995847727 cites W3098476189 @default.
- W2995847727 cites W3105970889 @default.
- W2995847727 cites W4361867455 @default.
- W2995847727 doi "https://doi.org/10.1002/9781119562306.ch6" @default.
- W2995847727 hasPublicationYear "2019" @default.
- W2995847727 type Work @default.
- W2995847727 sameAs 2995847727 @default.
- W2995847727 citedByCount "7" @default.
- W2995847727 countsByYear W29958477272020 @default.
- W2995847727 countsByYear W29958477272021 @default.
- W2995847727 countsByYear W29958477272022 @default.
- W2995847727 countsByYear W29958477272023 @default.
- W2995847727 crossrefType "other" @default.
- W2995847727 hasAuthorship W2995847727A5009789209 @default.
- W2995847727 hasAuthorship W2995847727A5018047770 @default.
- W2995847727 hasAuthorship W2995847727A5067391848 @default.
- W2995847727 hasAuthorship W2995847727A5076534518 @default.
- W2995847727 hasAuthorship W2995847727A5085087483 @default.
- W2995847727 hasConcept C105795698 @default.
- W2995847727 hasConcept C119599485 @default.
- W2995847727 hasConcept C119857082 @default.
- W2995847727 hasConcept C120665830 @default.
- W2995847727 hasConcept C121332964 @default.
- W2995847727 hasConcept C126255220 @default.
- W2995847727 hasConcept C127413603 @default.
- W2995847727 hasConcept C151730666 @default.
- W2995847727 hasConcept C154945302 @default.
- W2995847727 hasConcept C186370098 @default.
- W2995847727 hasConcept C192209626 @default.
- W2995847727 hasConcept C206345919 @default.
- W2995847727 hasConcept C2742236 @default.
- W2995847727 hasConcept C2776330181 @default.
- W2995847727 hasConcept C2779343474 @default.
- W2995847727 hasConcept C31258907 @default.
- W2995847727 hasConcept C33923547 @default.
- W2995847727 hasConcept C41008148 @default.
- W2995847727 hasConcept C86803240 @default.
- W2995847727 hasConceptScore W2995847727C105795698 @default.
- W2995847727 hasConceptScore W2995847727C119599485 @default.
- W2995847727 hasConceptScore W2995847727C119857082 @default.
- W2995847727 hasConceptScore W2995847727C120665830 @default.
- W2995847727 hasConceptScore W2995847727C121332964 @default.
- W2995847727 hasConceptScore W2995847727C126255220 @default.
- W2995847727 hasConceptScore W2995847727C127413603 @default.