Matches in SemOpenAlex for { <https://semopenalex.org/work/W2995853552> ?p ?o ?g. }
- W2995853552 endingPage "1663" @default.
- W2995853552 startingPage "1643" @default.
- W2995853552 abstract "Summary In this paper, an adaptive reinforcement learning approach is developed for a class of discrete‐time affine nonlinear systems with unmodeled dynamics. The multigradient recursive (MGR) algorithm is employed to solve the local optimal problem, which is inherent in gradient descent method. The MGR radial basis function neural network approximates the utility functions and unmodeled dynamics, which has a faster rate of convergence than that of the gradient descent method. A novel strategic utility function and cost function are defined for the affine systems. Finally, it concludes that all the signals in the closed‐loop system are semiglobal uniformly ultimately bounded through differential Lyapunov function method, and two simulation examples are presented to demonstrate the effectiveness of the proposed scheme." @default.
- W2995853552 created "2019-12-26" @default.
- W2995853552 creator A5035160808 @default.
- W2995853552 creator A5046881277 @default.
- W2995853552 creator A5069617479 @default.
- W2995853552 creator A5089971446 @default.
- W2995853552 date "2019-12-19" @default.
- W2995853552 modified "2023-10-14" @default.
- W2995853552 title "Multigradient recursive reinforcement learning NN control for affine nonlinear systems with unmodeled dynamics" @default.
- W2995853552 cites W1968908471 @default.
- W2995853552 cites W1989178142 @default.
- W2995853552 cites W2000072548 @default.
- W2995853552 cites W2002260889 @default.
- W2995853552 cites W2004875789 @default.
- W2995853552 cites W2010152647 @default.
- W2995853552 cites W2018160758 @default.
- W2995853552 cites W2052688942 @default.
- W2995853552 cites W2089684487 @default.
- W2995853552 cites W2099767582 @default.
- W2995853552 cites W2105004188 @default.
- W2995853552 cites W2107674817 @default.
- W2995853552 cites W2117945258 @default.
- W2995853552 cites W2132858840 @default.
- W2995853552 cites W2137531403 @default.
- W2995853552 cites W2142923542 @default.
- W2995853552 cites W2164679752 @default.
- W2995853552 cites W2279381790 @default.
- W2995853552 cites W2432637213 @default.
- W2995853552 cites W2439732090 @default.
- W2995853552 cites W2462102501 @default.
- W2995853552 cites W2462241752 @default.
- W2995853552 cites W2550394442 @default.
- W2995853552 cites W2554143848 @default.
- W2995853552 cites W2558832091 @default.
- W2995853552 cites W2559988195 @default.
- W2995853552 cites W2560131027 @default.
- W2995853552 cites W2592752239 @default.
- W2995853552 cites W2762093212 @default.
- W2995853552 cites W2762911482 @default.
- W2995853552 cites W2779072356 @default.
- W2995853552 cites W2782127155 @default.
- W2995853552 cites W2787063656 @default.
- W2995853552 cites W2793996673 @default.
- W2995853552 cites W2802164917 @default.
- W2995853552 cites W2883043945 @default.
- W2995853552 cites W2883820131 @default.
- W2995853552 cites W2884094885 @default.
- W2995853552 cites W2887360436 @default.
- W2995853552 cites W2894953182 @default.
- W2995853552 cites W2903976676 @default.
- W2995853552 cites W2904448246 @default.
- W2995853552 cites W2905109047 @default.
- W2995853552 cites W2907146124 @default.
- W2995853552 cites W2907917818 @default.
- W2995853552 cites W2909704334 @default.
- W2995853552 cites W2909967566 @default.
- W2995853552 cites W2910023039 @default.
- W2995853552 cites W2921889099 @default.
- W2995853552 cites W2921905705 @default.
- W2995853552 cites W2926623850 @default.
- W2995853552 cites W2938804260 @default.
- W2995853552 cites W2939438632 @default.
- W2995853552 cites W2944419018 @default.
- W2995853552 cites W2944612515 @default.
- W2995853552 cites W2944706468 @default.
- W2995853552 cites W2953055972 @default.
- W2995853552 cites W2954033048 @default.
- W2995853552 cites W2973688650 @default.
- W2995853552 cites W2974451895 @default.
- W2995853552 cites W2975220049 @default.
- W2995853552 cites W2982321573 @default.
- W2995853552 cites W4361805402 @default.
- W2995853552 cites W2489526136 @default.
- W2995853552 doi "https://doi.org/10.1002/rnc.4843" @default.
- W2995853552 hasPublicationYear "2019" @default.
- W2995853552 type Work @default.
- W2995853552 sameAs 2995853552 @default.
- W2995853552 citedByCount "17" @default.
- W2995853552 countsByYear W29958535522020 @default.
- W2995853552 countsByYear W29958535522021 @default.
- W2995853552 countsByYear W29958535522022 @default.
- W2995853552 countsByYear W29958535522023 @default.
- W2995853552 crossrefType "journal-article" @default.
- W2995853552 hasAuthorship W2995853552A5035160808 @default.
- W2995853552 hasAuthorship W2995853552A5046881277 @default.
- W2995853552 hasAuthorship W2995853552A5069617479 @default.
- W2995853552 hasAuthorship W2995853552A5089971446 @default.
- W2995853552 hasConcept C121332964 @default.
- W2995853552 hasConcept C126255220 @default.
- W2995853552 hasConcept C134306372 @default.
- W2995853552 hasConcept C153258448 @default.
- W2995853552 hasConcept C154945302 @default.
- W2995853552 hasConcept C158622935 @default.
- W2995853552 hasConcept C162324750 @default.
- W2995853552 hasConcept C202444582 @default.
- W2995853552 hasConcept C2775924081 @default.
- W2995853552 hasConcept C2777303404 @default.
- W2995853552 hasConcept C33923547 @default.