Matches in SemOpenAlex for { <https://semopenalex.org/work/W2995882507> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2995882507 endingPage "607" @default.
- W2995882507 startingPage "596" @default.
- W2995882507 abstract "One of the most difficult challenges in machine learning is the training process of artificial neural networks, which is mainly concerned with determining the best set of weights and biases. Gradient descent techniques are known as the most popular training algorithms. However, they are susceptible to local optima and slow convergence in training. Therefore, several stochastic optimization algorithms have been proposed in the literature to alleviate the shortcomings of gradient descent approaches. The butterfly optimization algorithm (BOA) is a recently proposed meta-heuristic approach. Its inspiration is based on the food foraging behavior of butterflies in the nature. Moreover, it has been shown that BOA is effective in undertaking a wide range of optimization problems and attaining the global optima solutions. In this paper, a new classification method based on the combination of artificial neural networks and BOA algorithm is proposed. To this end, BOA is applied as a new training strategy by optimizing the weights and biases of artificial neural networks. This leads to improving the convergence speed and also reducing the risk of falling into local optima. The proposed classification method is compared with other state-of-the-art methods based on two well-known data sets and different evaluation measures. The experimental results ascertain the superiority of the proposed method in comparison with the other methods." @default.
- W2995882507 created "2019-12-26" @default.
- W2995882507 creator A5015293969 @default.
- W2995882507 creator A5059557438 @default.
- W2995882507 creator A5072923302 @default.
- W2995882507 creator A5077932626 @default.
- W2995882507 creator A5079645370 @default.
- W2995882507 creator A5088897776 @default.
- W2995882507 date "2019-01-01" @default.
- W2995882507 modified "2023-09-23" @default.
- W2995882507 title "Evolving Artificial Neural Networks Using Butterfly Optimization Algorithm for Data Classification" @default.
- W2995882507 cites W1679732397 @default.
- W2995882507 cites W1925854681 @default.
- W2995882507 cites W1978831934 @default.
- W2995882507 cites W1980480036 @default.
- W2995882507 cites W2002302337 @default.
- W2995882507 cites W2033731173 @default.
- W2995882507 cites W2037916273 @default.
- W2995882507 cites W2050546928 @default.
- W2995882507 cites W2151554678 @default.
- W2995882507 cites W2290402024 @default.
- W2995882507 cites W2397302508 @default.
- W2995882507 cites W2553852618 @default.
- W2995882507 cites W2624707650 @default.
- W2995882507 cites W2625957737 @default.
- W2995882507 cites W2735447725 @default.
- W2995882507 cites W2767547957 @default.
- W2995882507 cites W2790662215 @default.
- W2995882507 cites W2892079407 @default.
- W2995882507 cites W2989608526 @default.
- W2995882507 cites W2990377129 @default.
- W2995882507 cites W4249718223 @default.
- W2995882507 cites W4252049996 @default.
- W2995882507 doi "https://doi.org/10.1007/978-3-030-36708-4_49" @default.
- W2995882507 hasPublicationYear "2019" @default.
- W2995882507 type Work @default.
- W2995882507 sameAs 2995882507 @default.
- W2995882507 citedByCount "31" @default.
- W2995882507 countsByYear W29958825072020 @default.
- W2995882507 countsByYear W29958825072021 @default.
- W2995882507 countsByYear W29958825072022 @default.
- W2995882507 countsByYear W29958825072023 @default.
- W2995882507 crossrefType "book-chapter" @default.
- W2995882507 hasAuthorship W2995882507A5015293969 @default.
- W2995882507 hasAuthorship W2995882507A5059557438 @default.
- W2995882507 hasAuthorship W2995882507A5072923302 @default.
- W2995882507 hasAuthorship W2995882507A5077932626 @default.
- W2995882507 hasAuthorship W2995882507A5079645370 @default.
- W2995882507 hasAuthorship W2995882507A5088897776 @default.
- W2995882507 hasConcept C11413529 @default.
- W2995882507 hasConcept C119857082 @default.
- W2995882507 hasConcept C126255220 @default.
- W2995882507 hasConcept C153180895 @default.
- W2995882507 hasConcept C154945302 @default.
- W2995882507 hasConcept C18903297 @default.
- W2995882507 hasConcept C2778605236 @default.
- W2995882507 hasConcept C2987595161 @default.
- W2995882507 hasConcept C33923547 @default.
- W2995882507 hasConcept C41008148 @default.
- W2995882507 hasConcept C50644808 @default.
- W2995882507 hasConcept C86803240 @default.
- W2995882507 hasConceptScore W2995882507C11413529 @default.
- W2995882507 hasConceptScore W2995882507C119857082 @default.
- W2995882507 hasConceptScore W2995882507C126255220 @default.
- W2995882507 hasConceptScore W2995882507C153180895 @default.
- W2995882507 hasConceptScore W2995882507C154945302 @default.
- W2995882507 hasConceptScore W2995882507C18903297 @default.
- W2995882507 hasConceptScore W2995882507C2778605236 @default.
- W2995882507 hasConceptScore W2995882507C2987595161 @default.
- W2995882507 hasConceptScore W2995882507C33923547 @default.
- W2995882507 hasConceptScore W2995882507C41008148 @default.
- W2995882507 hasConceptScore W2995882507C50644808 @default.
- W2995882507 hasConceptScore W2995882507C86803240 @default.
- W2995882507 hasLocation W29958825071 @default.
- W2995882507 hasOpenAccess W2995882507 @default.
- W2995882507 hasPrimaryLocation W29958825071 @default.
- W2995882507 hasRelatedWork W2061090821 @default.
- W2995882507 hasRelatedWork W2356957943 @default.
- W2995882507 hasRelatedWork W2380313759 @default.
- W2995882507 hasRelatedWork W2961085424 @default.
- W2995882507 hasRelatedWork W3046775127 @default.
- W2995882507 hasRelatedWork W4286629047 @default.
- W2995882507 hasRelatedWork W4306321456 @default.
- W2995882507 hasRelatedWork W4306674287 @default.
- W2995882507 hasRelatedWork W1629725936 @default.
- W2995882507 hasRelatedWork W4224009465 @default.
- W2995882507 isParatext "false" @default.
- W2995882507 isRetracted "false" @default.
- W2995882507 magId "2995882507" @default.
- W2995882507 workType "book-chapter" @default.