Matches in SemOpenAlex for { <https://semopenalex.org/work/W299601588> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W299601588 endingPage "145" @default.
- W299601588 startingPage "133" @default.
- W299601588 abstract "Most parts of southern Iran have frequently experienced extreme climate conditions including drought and floods. Seasonal prediction of dry and wet episodes is essential for competent management of limitted water resources during these extreme events. The capability of artificial neural network (ANN) models for forecasting seasonal precipitation was examined for two key stations (Shiraz and Bushehr) in southwestern Iran. Besides precipitation time series, historical records of three climate indicators including the Persian Gulf Sea Surface Temperature (PGSST), North Atlantic Oscillation (NAO), and Southern Oscillation Index (SOI) were used as the predictors. The Auto-Regression with eXtra inputs (ARX) model was firstly used as a linear approach to predict seasonal precipitation one season ahead. The neural network-based nonlinear ARX (NNARX) model was trained and optimized as the next step. Results confirmed the ability of the employed ARX family models in general and the optimized NNARX in particular for successful prediction of seasonal precipitation." @default.
- W299601588 created "2016-06-24" @default.
- W299601588 creator A5004572627 @default.
- W299601588 creator A5005773826 @default.
- W299601588 creator A5028104782 @default.
- W299601588 date "2010-11-04" @default.
- W299601588 modified "2023-09-26" @default.
- W299601588 title "IMPROVING NEURAL NETWORK MODELS FOR FORECASTING SEASONAL PRECIPITATION IN SOUTHWESTERN IRAN: THE EVALUATION OF OCEANIC–ATMOSPHERIC INDICES" @default.
- W299601588 cites W103156936 @default.
- W299601588 cites W1525302550 @default.
- W299601588 cites W1855258198 @default.
- W299601588 cites W1965324089 @default.
- W299601588 cites W1986934085 @default.
- W299601588 cites W2032771154 @default.
- W299601588 cites W2040135606 @default.
- W299601588 cites W2104000477 @default.
- W299601588 cites W2118464982 @default.
- W299601588 cites W2124776405 @default.
- W299601588 cites W2159164703 @default.
- W299601588 cites W2284023014 @default.
- W299601588 cites W2285257517 @default.
- W299601588 doi "https://doi.org/10.1142/9789812838100_0012" @default.
- W299601588 hasPublicationYear "2010" @default.
- W299601588 type Work @default.
- W299601588 sameAs 299601588 @default.
- W299601588 citedByCount "0" @default.
- W299601588 crossrefType "book-chapter" @default.
- W299601588 hasAuthorship W299601588A5004572627 @default.
- W299601588 hasAuthorship W299601588A5005773826 @default.
- W299601588 hasAuthorship W299601588A5028104782 @default.
- W299601588 hasConcept C107054158 @default.
- W299601588 hasConcept C119857082 @default.
- W299601588 hasConcept C127313418 @default.
- W299601588 hasConcept C134097258 @default.
- W299601588 hasConcept C153294291 @default.
- W299601588 hasConcept C17093552 @default.
- W299601588 hasConcept C205649164 @default.
- W299601588 hasConcept C39432304 @default.
- W299601588 hasConcept C41008148 @default.
- W299601588 hasConcept C49204034 @default.
- W299601588 hasConcept C50644808 @default.
- W299601588 hasConceptScore W299601588C107054158 @default.
- W299601588 hasConceptScore W299601588C119857082 @default.
- W299601588 hasConceptScore W299601588C127313418 @default.
- W299601588 hasConceptScore W299601588C134097258 @default.
- W299601588 hasConceptScore W299601588C153294291 @default.
- W299601588 hasConceptScore W299601588C17093552 @default.
- W299601588 hasConceptScore W299601588C205649164 @default.
- W299601588 hasConceptScore W299601588C39432304 @default.
- W299601588 hasConceptScore W299601588C41008148 @default.
- W299601588 hasConceptScore W299601588C49204034 @default.
- W299601588 hasConceptScore W299601588C50644808 @default.
- W299601588 hasLocation W2996015881 @default.
- W299601588 hasOpenAccess W299601588 @default.
- W299601588 hasPrimaryLocation W2996015881 @default.
- W299601588 hasRelatedWork W2003505446 @default.
- W299601588 hasRelatedWork W2121490959 @default.
- W299601588 hasRelatedWork W2348368830 @default.
- W299601588 hasRelatedWork W2350703126 @default.
- W299601588 hasRelatedWork W2380507588 @default.
- W299601588 hasRelatedWork W2500907323 @default.
- W299601588 hasRelatedWork W2732736789 @default.
- W299601588 hasRelatedWork W2900125682 @default.
- W299601588 hasRelatedWork W2917104794 @default.
- W299601588 hasRelatedWork W2955382531 @default.
- W299601588 hasRelatedWork W2971262759 @default.
- W299601588 hasRelatedWork W3039590110 @default.
- W299601588 hasRelatedWork W3084135547 @default.
- W299601588 hasRelatedWork W3146487173 @default.
- W299601588 hasRelatedWork W3150714801 @default.
- W299601588 hasRelatedWork W3200403520 @default.
- W299601588 hasRelatedWork W3213608400 @default.
- W299601588 hasRelatedWork W433241000 @default.
- W299601588 hasRelatedWork W2182980698 @default.
- W299601588 hasRelatedWork W2184620935 @default.
- W299601588 isParatext "false" @default.
- W299601588 isRetracted "false" @default.
- W299601588 magId "299601588" @default.
- W299601588 workType "book-chapter" @default.