Matches in SemOpenAlex for { <https://semopenalex.org/work/W2996089041> ?p ?o ?g. }
- W2996089041 endingPage "10" @default.
- W2996089041 startingPage "10" @default.
- W2996089041 abstract "In the smart grid (SG) environment, consumers are enabled to alter electricity consumption patterns in response to electricity prices and incentives. This results in prices that may differ from the initial price pattern. Electricity price and demand forecasting play a vital role in the reliability and sustainability of SG. Forecasting using big data has become a new hot research topic as a massive amount of data is being generated and stored in the SG environment. Electricity users, having advanced knowledge of prices and demand of electricity, can manage their load efficiently. In this paper, a recurrent neural network (RNN), long short term memory (LSTM), is used for electricity price and demand forecasting using big data. Researchers are working actively to propose new models of forecasting. These models contain a single input variable as well as multiple variables. From the literature, we observed that the use of multiple variables enhances the forecasting accuracy. Hence, our proposed model uses multiple variables as input and forecasts the future values of electricity demand and price. The hyperparameters of this algorithm are tuned using the Jaya optimization algorithm to improve the forecasting ability and increase the training mechanism of the model. Parameter tuning is necessary because the performance of a forecasting model depends on the values of these parameters. Selection of inappropriate values can result in inaccurate forecasting. So, integration of an optimization method improves the forecasting accuracy with minimum user efforts. For efficient forecasting, data is preprocessed and cleaned from missing values and outliers, using the z-score method. Furthermore, data is normalized before forecasting. The forecasting accuracy of the proposed model is evaluated using the root mean square error (RMSE) and mean absolute error (MAE). For a fair comparison, the proposed forecasting model is compared with univariate LSTM and support vector machine (SVM). The values of the performance metrics depict that the proposed model has higher accuracy than SVM and univariate LSTM." @default.
- W2996089041 created "2019-12-26" @default.
- W2996089041 creator A5014562556 @default.
- W2996089041 creator A5032253604 @default.
- W2996089041 creator A5038115688 @default.
- W2996089041 creator A5047445338 @default.
- W2996089041 creator A5055380996 @default.
- W2996089041 creator A5088227362 @default.
- W2996089041 date "2019-12-19" @default.
- W2996089041 modified "2023-10-02" @default.
- W2996089041 title "Electricity Load and Price Forecasting Using Jaya-Long Short Term Memory (JLSTM) in Smart Grids" @default.
- W2996089041 cites W1927233378 @default.
- W2996089041 cites W1956421020 @default.
- W2996089041 cites W2020078097 @default.
- W2996089041 cites W2064675550 @default.
- W2996089041 cites W2089750215 @default.
- W2996089041 cites W2120046447 @default.
- W2996089041 cites W2127192673 @default.
- W2996089041 cites W2191365824 @default.
- W2996089041 cites W2201233344 @default.
- W2996089041 cites W2313169588 @default.
- W2996089041 cites W2511508404 @default.
- W2996089041 cites W2530999883 @default.
- W2996089041 cites W2560599441 @default.
- W2996089041 cites W2590105483 @default.
- W2996089041 cites W2595827050 @default.
- W2996089041 cites W2604466268 @default.
- W2996089041 cites W2609968973 @default.
- W2996089041 cites W2697346439 @default.
- W2996089041 cites W2729222988 @default.
- W2996089041 cites W2774820484 @default.
- W2996089041 cites W2789871570 @default.
- W2996089041 cites W2791649304 @default.
- W2996089041 cites W2799827709 @default.
- W2996089041 cites W927592489 @default.
- W2996089041 doi "https://doi.org/10.3390/e22010010" @default.
- W2996089041 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7516403" @default.
- W2996089041 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33285785" @default.
- W2996089041 hasPublicationYear "2019" @default.
- W2996089041 type Work @default.
- W2996089041 sameAs 2996089041 @default.
- W2996089041 citedByCount "45" @default.
- W2996089041 countsByYear W29960890412020 @default.
- W2996089041 countsByYear W29960890412021 @default.
- W2996089041 countsByYear W29960890412022 @default.
- W2996089041 countsByYear W29960890412023 @default.
- W2996089041 crossrefType "journal-article" @default.
- W2996089041 hasAuthorship W2996089041A5014562556 @default.
- W2996089041 hasAuthorship W2996089041A5032253604 @default.
- W2996089041 hasAuthorship W2996089041A5038115688 @default.
- W2996089041 hasAuthorship W2996089041A5047445338 @default.
- W2996089041 hasAuthorship W2996089041A5055380996 @default.
- W2996089041 hasAuthorship W2996089041A5088227362 @default.
- W2996089041 hasBestOaLocation W29960890411 @default.
- W2996089041 hasConcept C10558101 @default.
- W2996089041 hasConcept C119599485 @default.
- W2996089041 hasConcept C127413603 @default.
- W2996089041 hasConcept C134306372 @default.
- W2996089041 hasConcept C146733006 @default.
- W2996089041 hasConcept C149782125 @default.
- W2996089041 hasConcept C154945302 @default.
- W2996089041 hasConcept C162324750 @default.
- W2996089041 hasConcept C182365436 @default.
- W2996089041 hasConcept C193809577 @default.
- W2996089041 hasConcept C206658404 @default.
- W2996089041 hasConcept C2781104810 @default.
- W2996089041 hasConcept C33923547 @default.
- W2996089041 hasConcept C41008148 @default.
- W2996089041 hasConcept C42475967 @default.
- W2996089041 hasConcept C79337645 @default.
- W2996089041 hasConcept C8642999 @default.
- W2996089041 hasConceptScore W2996089041C10558101 @default.
- W2996089041 hasConceptScore W2996089041C119599485 @default.
- W2996089041 hasConceptScore W2996089041C127413603 @default.
- W2996089041 hasConceptScore W2996089041C134306372 @default.
- W2996089041 hasConceptScore W2996089041C146733006 @default.
- W2996089041 hasConceptScore W2996089041C149782125 @default.
- W2996089041 hasConceptScore W2996089041C154945302 @default.
- W2996089041 hasConceptScore W2996089041C162324750 @default.
- W2996089041 hasConceptScore W2996089041C182365436 @default.
- W2996089041 hasConceptScore W2996089041C193809577 @default.
- W2996089041 hasConceptScore W2996089041C206658404 @default.
- W2996089041 hasConceptScore W2996089041C2781104810 @default.
- W2996089041 hasConceptScore W2996089041C33923547 @default.
- W2996089041 hasConceptScore W2996089041C41008148 @default.
- W2996089041 hasConceptScore W2996089041C42475967 @default.
- W2996089041 hasConceptScore W2996089041C79337645 @default.
- W2996089041 hasConceptScore W2996089041C8642999 @default.
- W2996089041 hasIssue "1" @default.
- W2996089041 hasLocation W29960890411 @default.
- W2996089041 hasLocation W29960890412 @default.
- W2996089041 hasLocation W29960890413 @default.
- W2996089041 hasOpenAccess W2996089041 @default.
- W2996089041 hasPrimaryLocation W29960890411 @default.
- W2996089041 hasRelatedWork W1038024982 @default.
- W2996089041 hasRelatedWork W1505507594 @default.
- W2996089041 hasRelatedWork W1540299753 @default.
- W2996089041 hasRelatedWork W2391345758 @default.