Matches in SemOpenAlex for { <https://semopenalex.org/work/W2996105854> ?p ?o ?g. }
- W2996105854 endingPage "586" @default.
- W2996105854 startingPage "586" @default.
- W2996105854 abstract "Optical coherence tomography (OCT) is a recently emerging non-invasive diagnostic tool useful in several medical applications such as ophthalmology, cardiology, gastroenterology and dermatology. One of the major problems with OCT pertains to its low contrast due to the presence of multiplicative speckle noise, which limits the signal-to-noise ratio (SNR) and obscures low-intensity and small features. In this paper, we recommend a new method using the 3D curvelet based K-times singular value decomposition (K-SVD) algorithm for speckle noise reduction and contrast enhancement of the intra-retinal layers of 3D Spectral-Domain OCT (3D-SDOCT) images. In order to benefit from the near-optimum properties of curvelet transform (such as good directional selectivity) on top of dictionary learning, we propose a new plan in dictionary learning by using the curvelet atoms as the initial dictionary. For this reason, the curvelet transform of the noisy image is taken and then the noisy coefficients matrix in each scale, rotation and spatial coordinates is passed through the K-SVD denoising algorithm with predefined 3D initial dictionary that is adaptively selected from thresholded coefficients in the same subband of the image. During the denoising of curvelet coefficients, we can also modify them for the purpose of contrast enhancement of intra-retinal layers. We demonstrate the ability of our proposed algorithm in the speckle noise reduction of 17 publicly available 3D OCT data sets, each of which contains 100 B-scans of size 512×1000 with and without neovascular age-related macular degeneration (AMD) images acquired using SDOCT, Bioptigen imaging systems. Experimental results show that an improvement from 1.27 to 7.81 in contrast to noise ratio (CNR), and from 38.09 to 1983.07 in equivalent number of looks (ENL) is achieved, which would outperform existing state-of-the-art OCT despeckling methods." @default.
- W2996105854 created "2019-12-26" @default.
- W2996105854 creator A5006369947 @default.
- W2996105854 creator A5042724473 @default.
- W2996105854 creator A5068782489 @default.
- W2996105854 creator A5087707059 @default.
- W2996105854 date "2020-01-03" @default.
- W2996105854 modified "2023-10-17" @default.
- W2996105854 title "Three-dimensional curvelet-based dictionary learning for speckle noise removal of optical coherence tomography" @default.
- W2996105854 cites W1507891636 @default.
- W2996105854 cites W1526427824 @default.
- W2996105854 cites W1568949277 @default.
- W2996105854 cites W1967985611 @default.
- W2996105854 cites W1974366076 @default.
- W2996105854 cites W1996367076 @default.
- W2996105854 cites W1999377661 @default.
- W2996105854 cites W2001080026 @default.
- W2996105854 cites W2001615430 @default.
- W2996105854 cites W2004956944 @default.
- W2996105854 cites W2007203285 @default.
- W2996105854 cites W2014500411 @default.
- W2996105854 cites W2015659872 @default.
- W2996105854 cites W2015976733 @default.
- W2996105854 cites W2018361157 @default.
- W2996105854 cites W2021229920 @default.
- W2996105854 cites W2027606067 @default.
- W2996105854 cites W2027986946 @default.
- W2996105854 cites W2043567700 @default.
- W2996105854 cites W2047781078 @default.
- W2996105854 cites W2056575109 @default.
- W2996105854 cites W2057535513 @default.
- W2996105854 cites W2058584842 @default.
- W2996105854 cites W2061240737 @default.
- W2996105854 cites W2071944333 @default.
- W2996105854 cites W2072843185 @default.
- W2996105854 cites W2082677554 @default.
- W2996105854 cites W2092875148 @default.
- W2996105854 cites W2093381832 @default.
- W2996105854 cites W2096598117 @default.
- W2996105854 cites W2103015025 @default.
- W2996105854 cites W2103457061 @default.
- W2996105854 cites W2108207814 @default.
- W2996105854 cites W2108304270 @default.
- W2996105854 cites W2108370292 @default.
- W2996105854 cites W2112437734 @default.
- W2996105854 cites W2115528090 @default.
- W2996105854 cites W2115794463 @default.
- W2996105854 cites W2116167925 @default.
- W2996105854 cites W2121801148 @default.
- W2996105854 cites W2127998931 @default.
- W2996105854 cites W2130094715 @default.
- W2996105854 cites W2132680427 @default.
- W2996105854 cites W2133665775 @default.
- W2996105854 cites W2134582192 @default.
- W2996105854 cites W2138157582 @default.
- W2996105854 cites W2147497470 @default.
- W2996105854 cites W2151361113 @default.
- W2996105854 cites W2153663612 @default.
- W2996105854 cites W2156706485 @default.
- W2996105854 cites W2156984914 @default.
- W2996105854 cites W2161733775 @default.
- W2996105854 cites W2163009429 @default.
- W2996105854 cites W2166086209 @default.
- W2996105854 cites W2167297338 @default.
- W2996105854 cites W2418802570 @default.
- W2996105854 cites W2608302828 @default.
- W2996105854 cites W2791702886 @default.
- W2996105854 cites W2901058642 @default.
- W2996105854 cites W2962976869 @default.
- W2996105854 cites W2974895113 @default.
- W2996105854 cites W4253229164 @default.
- W2996105854 doi "https://doi.org/10.1364/boe.377021" @default.
- W2996105854 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7041443" @default.
- W2996105854 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32133216" @default.
- W2996105854 hasPublicationYear "2020" @default.
- W2996105854 type Work @default.
- W2996105854 sameAs 2996105854 @default.
- W2996105854 citedByCount "12" @default.
- W2996105854 countsByYear W29961058542020 @default.
- W2996105854 countsByYear W29961058542021 @default.
- W2996105854 countsByYear W29961058542022 @default.
- W2996105854 countsByYear W29961058542023 @default.
- W2996105854 crossrefType "journal-article" @default.
- W2996105854 hasAuthorship W2996105854A5006369947 @default.
- W2996105854 hasAuthorship W2996105854A5042724473 @default.
- W2996105854 hasAuthorship W2996105854A5068782489 @default.
- W2996105854 hasAuthorship W2996105854A5087707059 @default.
- W2996105854 hasBestOaLocation W29961058541 @default.
- W2996105854 hasConcept C102290492 @default.
- W2996105854 hasConcept C115961682 @default.
- W2996105854 hasConcept C120665830 @default.
- W2996105854 hasConcept C121332964 @default.
- W2996105854 hasConcept C131720326 @default.
- W2996105854 hasConcept C153180895 @default.
- W2996105854 hasConcept C154945302 @default.
- W2996105854 hasConcept C163294075 @default.
- W2996105854 hasConcept C180940675 @default.
- W2996105854 hasConcept C196216189 @default.