Matches in SemOpenAlex for { <https://semopenalex.org/work/W2996108993> ?p ?o ?g. }
- W2996108993 endingPage "106902" @default.
- W2996108993 startingPage "106902" @default.
- W2996108993 abstract "An important problem with model averaging approach is the choice of weights. The Mallows criterion for choosing weights suggested by Hansen (2007) is the first asymptotically optimal criterion, which has been used widely. In the current paper, the authors propose a corrected Mallows model averaging (MMAc) method based on F distribution in small sample sizes. MMAc exhibits the same asymptotic optimality as Mallows model averaging (MMA) in the sense of minimizing the squared errors. The consistency of the MMAc based weights tending to the optimal weights minimizing MSE is also studied. The authors derive the convergence rate of the new empirical weights. Similar property for MMA and Jackknife model averaging (JMA) by Hansen and Racine (2012) is established as well. An extensive simulation study shows that MMAc often performs better than MMA and other commonly used model averaging methods, especially for small and moderate sample size cases. The results from the real data analysis also support the proposed method." @default.
- W2996108993 created "2019-12-26" @default.
- W2996108993 creator A5049307263 @default.
- W2996108993 creator A5082590468 @default.
- W2996108993 date "2020-04-01" @default.
- W2996108993 modified "2023-10-15" @default.
- W2996108993 title "Corrected Mallows criterion for model averaging" @default.
- W2996108993 cites W1517600448 @default.
- W2996108993 cites W1968371014 @default.
- W2996108993 cites W1994672023 @default.
- W2996108993 cites W2010647378 @default.
- W2996108993 cites W2014360396 @default.
- W2996108993 cites W2024139929 @default.
- W2996108993 cites W2028147019 @default.
- W2996108993 cites W2037522963 @default.
- W2996108993 cites W2052025831 @default.
- W2996108993 cites W2056481711 @default.
- W2996108993 cites W2057331441 @default.
- W2996108993 cites W2078502317 @default.
- W2996108993 cites W2087913441 @default.
- W2996108993 cites W2108443364 @default.
- W2996108993 cites W2109785413 @default.
- W2996108993 cites W2111051773 @default.
- W2996108993 cites W2122196572 @default.
- W2996108993 cites W2125251038 @default.
- W2996108993 cites W2126584287 @default.
- W2996108993 cites W2152933101 @default.
- W2996108993 cites W2208430066 @default.
- W2996108993 cites W2261567389 @default.
- W2996108993 cites W2302124411 @default.
- W2996108993 cites W2338007889 @default.
- W2996108993 cites W2424039278 @default.
- W2996108993 cites W2493959018 @default.
- W2996108993 cites W2602449753 @default.
- W2996108993 cites W2611757366 @default.
- W2996108993 cites W2760821268 @default.
- W2996108993 cites W2904550086 @default.
- W2996108993 cites W2940297277 @default.
- W2996108993 cites W2961495148 @default.
- W2996108993 cites W3121321091 @default.
- W2996108993 cites W3124230025 @default.
- W2996108993 cites W3124442571 @default.
- W2996108993 cites W3124798525 @default.
- W2996108993 doi "https://doi.org/10.1016/j.csda.2019.106902" @default.
- W2996108993 hasPublicationYear "2020" @default.
- W2996108993 type Work @default.
- W2996108993 sameAs 2996108993 @default.
- W2996108993 citedByCount "8" @default.
- W2996108993 countsByYear W29961089932020 @default.
- W2996108993 countsByYear W29961089932021 @default.
- W2996108993 countsByYear W29961089932022 @default.
- W2996108993 countsByYear W29961089932023 @default.
- W2996108993 crossrefType "journal-article" @default.
- W2996108993 hasAuthorship W2996108993A5049307263 @default.
- W2996108993 hasAuthorship W2996108993A5082590468 @default.
- W2996108993 hasConcept C105795698 @default.
- W2996108993 hasConcept C111472728 @default.
- W2996108993 hasConcept C126255220 @default.
- W2996108993 hasConcept C127162648 @default.
- W2996108993 hasConcept C129848803 @default.
- W2996108993 hasConcept C138885662 @default.
- W2996108993 hasConcept C139945424 @default.
- W2996108993 hasConcept C162324750 @default.
- W2996108993 hasConcept C181789720 @default.
- W2996108993 hasConcept C185429906 @default.
- W2996108993 hasConcept C189950617 @default.
- W2996108993 hasConcept C2524010 @default.
- W2996108993 hasConcept C2776436953 @default.
- W2996108993 hasConcept C2777303404 @default.
- W2996108993 hasConcept C28826006 @default.
- W2996108993 hasConcept C31258907 @default.
- W2996108993 hasConcept C33923547 @default.
- W2996108993 hasConcept C41008148 @default.
- W2996108993 hasConcept C50522688 @default.
- W2996108993 hasConcept C57869625 @default.
- W2996108993 hasConcept C81790035 @default.
- W2996108993 hasConceptScore W2996108993C105795698 @default.
- W2996108993 hasConceptScore W2996108993C111472728 @default.
- W2996108993 hasConceptScore W2996108993C126255220 @default.
- W2996108993 hasConceptScore W2996108993C127162648 @default.
- W2996108993 hasConceptScore W2996108993C129848803 @default.
- W2996108993 hasConceptScore W2996108993C138885662 @default.
- W2996108993 hasConceptScore W2996108993C139945424 @default.
- W2996108993 hasConceptScore W2996108993C162324750 @default.
- W2996108993 hasConceptScore W2996108993C181789720 @default.
- W2996108993 hasConceptScore W2996108993C185429906 @default.
- W2996108993 hasConceptScore W2996108993C189950617 @default.
- W2996108993 hasConceptScore W2996108993C2524010 @default.
- W2996108993 hasConceptScore W2996108993C2776436953 @default.
- W2996108993 hasConceptScore W2996108993C2777303404 @default.
- W2996108993 hasConceptScore W2996108993C28826006 @default.
- W2996108993 hasConceptScore W2996108993C31258907 @default.
- W2996108993 hasConceptScore W2996108993C33923547 @default.
- W2996108993 hasConceptScore W2996108993C41008148 @default.
- W2996108993 hasConceptScore W2996108993C50522688 @default.
- W2996108993 hasConceptScore W2996108993C57869625 @default.
- W2996108993 hasConceptScore W2996108993C81790035 @default.
- W2996108993 hasFunder F4320321001 @default.