Matches in SemOpenAlex for { <https://semopenalex.org/work/W2996125364> ?p ?o ?g. }
- W2996125364 endingPage "1312" @default.
- W2996125364 startingPage "1304" @default.
- W2996125364 abstract "Worldwide, there is a trend towards increased herd sizes, and the animal-to-stockman ratio is increasing within the beef and dairy sectors; thus, the time available to monitoring individual animals is reducing. The behaviour of cows is known to change in the hours prior to parturition, for example, less time ruminating and eating and increased activity level and tail-raise events. These behaviours can be monitored non-invasively using animal-mounted sensors. Thus, behavioural traits are ideal variables for the prediction of calving. This study explored the potential of two sensor technologies for their capabilities in predicting when calf expulsion should be expected. Two trials were conducted at separate locations: (i) beef cows (n = 144) and (ii) dairy cows (n = 110). Two sensors were deployed on each cow: (1) Afimilk Silent Herdsman (SHM) collars monitoring time spent ruminating (RUM), eating (EAT) and the relative activity level (ACT) of the cow, and (2) tail-mounted Axivity accelerometers to detect tail-raise events (TAIL). The exact time the calf was expelled from the cow was determined by viewing closed-circuit television camera footage. Machine learning random forest algorithms were developed to predict when calf expulsion should be expected using single-sensor variables and by integrating multiple-sensor data-streams. The performance of the models was tested using the Matthew’s correlation coefficient (MCC), the area under the curve, and the sensitivity and specificity of predictions. The TAIL model was slightly better at predicting calving within a 5-h window for beef cows (MCC = 0.31) than for dairy cows (MCC = 0.29). The TAIL + RUM + EAT models were equally as good at predicting calving within a 5-h window for beef and dairy cows (MCC = 0.32 for both models). Combining data-streams from SHM and tail sensors did not substantially improve model performance over tail sensors alone; therefore, hour-by-hour algorithms for the prediction of time of calf expulsion were developed using tail sensor data. Optimal classification occurred at 2 h prior to calving for both beef (MCC = 0.29) and dairy cows (MCC = 0.25). This study showed that tail sensors alone are adequate for the prediction of parturition and that the optimal time for prediction is 2 h before expulsion of the calf." @default.
- W2996125364 created "2019-12-26" @default.
- W2996125364 creator A5001429269 @default.
- W2996125364 creator A5006302292 @default.
- W2996125364 creator A5012566965 @default.
- W2996125364 creator A5013080130 @default.
- W2996125364 creator A5016693426 @default.
- W2996125364 creator A5017157971 @default.
- W2996125364 creator A5022164361 @default.
- W2996125364 creator A5026462092 @default.
- W2996125364 creator A5041373376 @default.
- W2996125364 creator A5043208465 @default.
- W2996125364 creator A5060878556 @default.
- W2996125364 date "2020-01-01" @default.
- W2996125364 modified "2023-10-06" @default.
- W2996125364 title "Using animal-mounted sensor technology and machine learning to predict time-to-calving in beef and dairy cows" @default.
- W2996125364 cites W1517871929 @default.
- W2996125364 cites W1964992271 @default.
- W2996125364 cites W1972963842 @default.
- W2996125364 cites W1981017804 @default.
- W2996125364 cites W1985131608 @default.
- W2996125364 cites W1996055439 @default.
- W2996125364 cites W2006617902 @default.
- W2996125364 cites W2026019681 @default.
- W2996125364 cites W2027929094 @default.
- W2996125364 cites W2040122612 @default.
- W2996125364 cites W2042137067 @default.
- W2996125364 cites W2057249214 @default.
- W2996125364 cites W2060773174 @default.
- W2996125364 cites W2070885132 @default.
- W2996125364 cites W2073734547 @default.
- W2996125364 cites W2089095243 @default.
- W2996125364 cites W2124009140 @default.
- W2996125364 cites W2129373778 @default.
- W2996125364 cites W2136569603 @default.
- W2996125364 cites W2140789133 @default.
- W2996125364 cites W2158396346 @default.
- W2996125364 cites W2194737404 @default.
- W2996125364 cites W229511817 @default.
- W2996125364 cites W2563255535 @default.
- W2996125364 cites W2563323787 @default.
- W2996125364 cites W2613568213 @default.
- W2996125364 cites W265285070 @default.
- W2996125364 cites W2767215098 @default.
- W2996125364 cites W2772282006 @default.
- W2996125364 cites W2789525945 @default.
- W2996125364 doi "https://doi.org/10.1017/s1751731119003380" @default.
- W2996125364 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31928536" @default.
- W2996125364 hasPublicationYear "2020" @default.
- W2996125364 type Work @default.
- W2996125364 sameAs 2996125364 @default.
- W2996125364 citedByCount "27" @default.
- W2996125364 countsByYear W29961253642021 @default.
- W2996125364 countsByYear W29961253642022 @default.
- W2996125364 countsByYear W29961253642023 @default.
- W2996125364 crossrefType "journal-article" @default.
- W2996125364 hasAuthorship W2996125364A5001429269 @default.
- W2996125364 hasAuthorship W2996125364A5006302292 @default.
- W2996125364 hasAuthorship W2996125364A5012566965 @default.
- W2996125364 hasAuthorship W2996125364A5013080130 @default.
- W2996125364 hasAuthorship W2996125364A5016693426 @default.
- W2996125364 hasAuthorship W2996125364A5017157971 @default.
- W2996125364 hasAuthorship W2996125364A5022164361 @default.
- W2996125364 hasAuthorship W2996125364A5026462092 @default.
- W2996125364 hasAuthorship W2996125364A5041373376 @default.
- W2996125364 hasAuthorship W2996125364A5043208465 @default.
- W2996125364 hasAuthorship W2996125364A5060878556 @default.
- W2996125364 hasBestOaLocation W29961253641 @default.
- W2996125364 hasConcept C105795698 @default.
- W2996125364 hasConcept C111919701 @default.
- W2996125364 hasConcept C140793950 @default.
- W2996125364 hasConcept C169760540 @default.
- W2996125364 hasConcept C169900460 @default.
- W2996125364 hasConcept C194775826 @default.
- W2996125364 hasConcept C22641795 @default.
- W2996125364 hasConcept C2776060345 @default.
- W2996125364 hasConcept C2776659692 @default.
- W2996125364 hasConcept C2779234561 @default.
- W2996125364 hasConcept C2780505807 @default.
- W2996125364 hasConcept C2909432541 @default.
- W2996125364 hasConcept C33923547 @default.
- W2996125364 hasConcept C41008148 @default.
- W2996125364 hasConcept C54355233 @default.
- W2996125364 hasConcept C86803240 @default.
- W2996125364 hasConcept C89805583 @default.
- W2996125364 hasConceptScore W2996125364C105795698 @default.
- W2996125364 hasConceptScore W2996125364C111919701 @default.
- W2996125364 hasConceptScore W2996125364C140793950 @default.
- W2996125364 hasConceptScore W2996125364C169760540 @default.
- W2996125364 hasConceptScore W2996125364C169900460 @default.
- W2996125364 hasConceptScore W2996125364C194775826 @default.
- W2996125364 hasConceptScore W2996125364C22641795 @default.
- W2996125364 hasConceptScore W2996125364C2776060345 @default.
- W2996125364 hasConceptScore W2996125364C2776659692 @default.
- W2996125364 hasConceptScore W2996125364C2779234561 @default.
- W2996125364 hasConceptScore W2996125364C2780505807 @default.
- W2996125364 hasConceptScore W2996125364C2909432541 @default.
- W2996125364 hasConceptScore W2996125364C33923547 @default.