Matches in SemOpenAlex for { <https://semopenalex.org/work/W2996154653> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2996154653 abstract "According the 2010 global burden of disease study, Chronic Kidney Diseases (CKD) was ranked 18th in the list of causes of total no. of deaths worldwide. 10% of the population worldwide is affected by CKD. The prediction of CKD can become a boon for the population to predict the health. Various method and techniques are undergoing the research phase for developing the most accurate CKD prediction system. Using Machine Learning techniques is the most promising one in this area due to its computing function and Machine Learning rules. Existing Systems are working well in predicting the accurate result but still more attributes of data and complicity of health parameter make the root layer for the innovation of new approaches. This study focuses on a novel approach for improving the prediction of CKD. In recent time Neural network system has discovered its use in disease diagnoses, which is depended upon prediction from symptoms data set. Chronic kidney disease detection system using neural network is shown here. This system of neural network accepts disease-symptoms as input and it is trained according to various training algorithms. After neural network is trained using back propagation algorithms, this trained neural network system is used for detection of kidney disease in the human body." @default.
- W2996154653 created "2019-12-26" @default.
- W2996154653 creator A5028316098 @default.
- W2996154653 creator A5032194941 @default.
- W2996154653 date "2019-11-25" @default.
- W2996154653 modified "2023-09-25" @default.
- W2996154653 title "Survey for the Prediction of Chronic Kidney Disease using Machine Learning" @default.
- W2996154653 cites W2604190157 @default.
- W2996154653 cites W2761207182 @default.
- W2996154653 cites W2913563008 @default.
- W2996154653 cites W2914730374 @default.
- W2996154653 cites W2933013505 @default.
- W2996154653 cites W2944880973 @default.
- W2996154653 cites W2996506341 @default.
- W2996154653 doi "https://doi.org/10.32628/ijsrset196629" @default.
- W2996154653 hasPublicationYear "2019" @default.
- W2996154653 type Work @default.
- W2996154653 sameAs 2996154653 @default.
- W2996154653 citedByCount "0" @default.
- W2996154653 crossrefType "journal-article" @default.
- W2996154653 hasAuthorship W2996154653A5028316098 @default.
- W2996154653 hasAuthorship W2996154653A5032194941 @default.
- W2996154653 hasBestOaLocation W29961546531 @default.
- W2996154653 hasConcept C119857082 @default.
- W2996154653 hasConcept C124101348 @default.
- W2996154653 hasConcept C126322002 @default.
- W2996154653 hasConcept C142724271 @default.
- W2996154653 hasConcept C154945302 @default.
- W2996154653 hasConcept C2778653478 @default.
- W2996154653 hasConcept C2779134260 @default.
- W2996154653 hasConcept C2908647359 @default.
- W2996154653 hasConcept C41008148 @default.
- W2996154653 hasConcept C50644808 @default.
- W2996154653 hasConcept C71924100 @default.
- W2996154653 hasConcept C99454951 @default.
- W2996154653 hasConceptScore W2996154653C119857082 @default.
- W2996154653 hasConceptScore W2996154653C124101348 @default.
- W2996154653 hasConceptScore W2996154653C126322002 @default.
- W2996154653 hasConceptScore W2996154653C142724271 @default.
- W2996154653 hasConceptScore W2996154653C154945302 @default.
- W2996154653 hasConceptScore W2996154653C2778653478 @default.
- W2996154653 hasConceptScore W2996154653C2779134260 @default.
- W2996154653 hasConceptScore W2996154653C2908647359 @default.
- W2996154653 hasConceptScore W2996154653C41008148 @default.
- W2996154653 hasConceptScore W2996154653C50644808 @default.
- W2996154653 hasConceptScore W2996154653C71924100 @default.
- W2996154653 hasConceptScore W2996154653C99454951 @default.
- W2996154653 hasLocation W29961546531 @default.
- W2996154653 hasOpenAccess W2996154653 @default.
- W2996154653 hasPrimaryLocation W29961546531 @default.
- W2996154653 hasRelatedWork W1306813 @default.
- W2996154653 hasRelatedWork W1948042 @default.
- W2996154653 hasRelatedWork W4081608 @default.
- W2996154653 hasRelatedWork W4179840 @default.
- W2996154653 hasRelatedWork W5683678 @default.
- W2996154653 hasRelatedWork W5813897 @default.
- W2996154653 hasRelatedWork W6229082 @default.
- W2996154653 hasRelatedWork W6310906 @default.
- W2996154653 hasRelatedWork W8643228 @default.
- W2996154653 hasRelatedWork W3280089 @default.
- W2996154653 isParatext "false" @default.
- W2996154653 isRetracted "false" @default.
- W2996154653 magId "2996154653" @default.
- W2996154653 workType "article" @default.