Matches in SemOpenAlex for { <https://semopenalex.org/work/W2996202272> ?p ?o ?g. }
- W2996202272 endingPage "3045" @default.
- W2996202272 startingPage "3045" @default.
- W2996202272 abstract "The Automated Self-Administered 24-Hour Dietary Assessment Tool (ASA24) is a free dietary recall system that outputs fewer nutrients than the Nutrition Data System for Research (NDSR). NDSR uses the Nutrition Coordinating Center (NCC) Food and Nutrient Database, both of which require a license. Manual lookup of ASA24 foods into NDSR is time-consuming but currently the only way to acquire NCC-exclusive nutrients. Using lactose as an example, we evaluated machine learning and database matching methods to estimate this NCC-exclusive nutrient from ASA24 reports. ASA24-reported foods were manually looked up into NDSR to obtain lactose estimates and split into training (n = 378) and test (n = 189) datasets. Nine machine learning models were developed to predict lactose from the nutrients common between ASA24 and the NCC database. Database matching algorithms were developed to match NCC foods to an ASA24 food using only nutrients (“Nutrient-Only”) or the nutrient and food descriptions (“Nutrient + Text”). For both methods, the lactose values were compared to the manual curation. Among machine learning models, the XGB-Regressor model performed best on held-out test data (R2 = 0.33). For the database matching method, Nutrient + Text matching yielded the best lactose estimates (R2 = 0.76), a vast improvement over the status quo of no estimate. These results suggest that computational methods can successfully estimate an NCC-exclusive nutrient for foods reported in ASA24." @default.
- W2996202272 created "2019-12-26" @default.
- W2996202272 creator A5004351739 @default.
- W2996202272 creator A5021685707 @default.
- W2996202272 creator A5034839918 @default.
- W2996202272 creator A5049230434 @default.
- W2996202272 creator A5054512806 @default.
- W2996202272 creator A5069580200 @default.
- W2996202272 creator A5090066772 @default.
- W2996202272 date "2019-12-13" @default.
- W2996202272 modified "2023-10-16" @default.
- W2996202272 title "Nutrient Estimation from 24-Hour Food Recalls Using Machine Learning and Database Mapping: A Case Study with Lactose" @default.
- W2996202272 cites W1514828683 @default.
- W2996202272 cites W1572649082 @default.
- W2996202272 cites W1761524747 @default.
- W2996202272 cites W1994904805 @default.
- W2996202272 cites W1995443851 @default.
- W2996202272 cites W2034143386 @default.
- W2996202272 cites W2043527314 @default.
- W2996202272 cites W2074810351 @default.
- W2996202272 cites W2132249611 @default.
- W2996202272 cites W2137012774 @default.
- W2996202272 cites W2327709519 @default.
- W2996202272 cites W2518081821 @default.
- W2996202272 cites W2580157760 @default.
- W2996202272 cites W2618498494 @default.
- W2996202272 cites W2735436835 @default.
- W2996202272 cites W2765240127 @default.
- W2996202272 cites W2794711763 @default.
- W2996202272 cites W2802319595 @default.
- W2996202272 cites W2967453005 @default.
- W2996202272 cites W2969489093 @default.
- W2996202272 doi "https://doi.org/10.3390/nu11123045" @default.
- W2996202272 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6950225" @default.
- W2996202272 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31847188" @default.
- W2996202272 hasPublicationYear "2019" @default.
- W2996202272 type Work @default.
- W2996202272 sameAs 2996202272 @default.
- W2996202272 citedByCount "20" @default.
- W2996202272 countsByYear W29962022722020 @default.
- W2996202272 countsByYear W29962022722021 @default.
- W2996202272 countsByYear W29962022722022 @default.
- W2996202272 countsByYear W29962022722023 @default.
- W2996202272 crossrefType "journal-article" @default.
- W2996202272 hasAuthorship W2996202272A5004351739 @default.
- W2996202272 hasAuthorship W2996202272A5021685707 @default.
- W2996202272 hasAuthorship W2996202272A5034839918 @default.
- W2996202272 hasAuthorship W2996202272A5049230434 @default.
- W2996202272 hasAuthorship W2996202272A5054512806 @default.
- W2996202272 hasAuthorship W2996202272A5069580200 @default.
- W2996202272 hasAuthorship W2996202272A5090066772 @default.
- W2996202272 hasBestOaLocation W29962022721 @default.
- W2996202272 hasConcept C105795698 @default.
- W2996202272 hasConcept C119857082 @default.
- W2996202272 hasConcept C142796444 @default.
- W2996202272 hasConcept C154945302 @default.
- W2996202272 hasConcept C165064840 @default.
- W2996202272 hasConcept C18903297 @default.
- W2996202272 hasConcept C197371599 @default.
- W2996202272 hasConcept C2778724459 @default.
- W2996202272 hasConcept C31903555 @default.
- W2996202272 hasConcept C33923547 @default.
- W2996202272 hasConcept C41008148 @default.
- W2996202272 hasConcept C77088390 @default.
- W2996202272 hasConcept C86803240 @default.
- W2996202272 hasConceptScore W2996202272C105795698 @default.
- W2996202272 hasConceptScore W2996202272C119857082 @default.
- W2996202272 hasConceptScore W2996202272C142796444 @default.
- W2996202272 hasConceptScore W2996202272C154945302 @default.
- W2996202272 hasConceptScore W2996202272C165064840 @default.
- W2996202272 hasConceptScore W2996202272C18903297 @default.
- W2996202272 hasConceptScore W2996202272C197371599 @default.
- W2996202272 hasConceptScore W2996202272C2778724459 @default.
- W2996202272 hasConceptScore W2996202272C31903555 @default.
- W2996202272 hasConceptScore W2996202272C33923547 @default.
- W2996202272 hasConceptScore W2996202272C41008148 @default.
- W2996202272 hasConceptScore W2996202272C77088390 @default.
- W2996202272 hasConceptScore W2996202272C86803240 @default.
- W2996202272 hasFunder F4320309090 @default.
- W2996202272 hasFunder F4320332605 @default.
- W2996202272 hasIssue "12" @default.
- W2996202272 hasLocation W29962022721 @default.
- W2996202272 hasLocation W29962022722 @default.
- W2996202272 hasLocation W29962022723 @default.
- W2996202272 hasLocation W29962022724 @default.
- W2996202272 hasLocation W29962022725 @default.
- W2996202272 hasOpenAccess W2996202272 @default.
- W2996202272 hasPrimaryLocation W29962022721 @default.
- W2996202272 hasRelatedWork W1983632545 @default.
- W2996202272 hasRelatedWork W2011800505 @default.
- W2996202272 hasRelatedWork W2073056227 @default.
- W2996202272 hasRelatedWork W2112736022 @default.
- W2996202272 hasRelatedWork W2154957077 @default.
- W2996202272 hasRelatedWork W2437957687 @default.
- W2996202272 hasRelatedWork W2765175576 @default.
- W2996202272 hasRelatedWork W2961085424 @default.
- W2996202272 hasRelatedWork W4221122775 @default.
- W2996202272 hasRelatedWork W4322504607 @default.