Matches in SemOpenAlex for { <https://semopenalex.org/work/W2996281608> ?p ?o ?g. }
- W2996281608 endingPage "136146" @default.
- W2996281608 startingPage "136146" @default.
- W2996281608 abstract "Dust particulates play an essential role for the nucleation, hygroscopicity and also contribute to aerosol mass. We investigated the chemical composition, size distribution and mixing states of PM2.5 using a single-particle aerosol mass spectrometer (SPAMS), Monitor for AeRosols and Gases (MARGA), and off-line membrane sampling from 2018.1.24 to 2018.2.20 at a coastal supersite in Ningbo, a port city in Yangtze River Delta, China. During the study campaign, the eastern part of China had experienced a wide range of cooling, sandstorm, and snowfall processes. The entire sampling campaign was categorized into five sub-periods based on the levels of PM2.5 and the ratios of PM2.5/PM10, namely clean (T1), heavy pollution (T2), light pollution (T3), dust (sandstorm) (T4) and cleaning pollution (T5) period. After comparing the average mass spectrum for each period, it shows that the primary ions, such as Ca2+and SiO3-, rarely coexist with each other within a single particle, but secondary ions generally coexist with these primary ions. Furthermore, the coexistence of each two different ions within a particle does not show distinct variation for the whole study periods. All these suggest that the absorption and partitioning of gaseous contaminants into the surface of primary aerosol through heterogeneous reactions are the major pathways of aging and growth of aerosol; and the merging of particles through collisions usually is insignificant. Although the absolute concentrations of nitrate and sulfate all increased with the PM2.5 concentrations, the relative equivalent concentrations of NO3- and SO42- displayed opposite trends; the relative contribution of sulfate decreased and that of nitrate increased as the increase of pollution. During the dust period, the relative equivalent concentrations of calcium and/or potassium ions in PM2.5 are significantly higher. This study provided deep insights about the mixing states and characteristics of particulate after long-range transport and a visualization tool for aerosol study." @default.
- W2996281608 created "2019-12-26" @default.
- W2996281608 creator A5009884211 @default.
- W2996281608 creator A5011740024 @default.
- W2996281608 creator A5013944987 @default.
- W2996281608 creator A5015893806 @default.
- W2996281608 creator A5028255357 @default.
- W2996281608 creator A5039749154 @default.
- W2996281608 creator A5057791511 @default.
- W2996281608 creator A5072659014 @default.
- W2996281608 date "2020-03-01" @default.
- W2996281608 modified "2023-10-15" @default.
- W2996281608 title "The characteristics and mixing states of PM2.5 during a winter dust storm in Ningbo of the Yangtze River Delta, China" @default.
- W2996281608 cites W1901194973 @default.
- W2996281608 cites W1968078563 @default.
- W2996281608 cites W1971381271 @default.
- W2996281608 cites W1986173013 @default.
- W2996281608 cites W2003040344 @default.
- W2996281608 cites W2005811588 @default.
- W2996281608 cites W2023697913 @default.
- W2996281608 cites W2027791183 @default.
- W2996281608 cites W2043629647 @default.
- W2996281608 cites W2046175525 @default.
- W2996281608 cites W2047689110 @default.
- W2996281608 cites W2050659816 @default.
- W2996281608 cites W2052172169 @default.
- W2996281608 cites W2073882830 @default.
- W2996281608 cites W2075712895 @default.
- W2996281608 cites W2077968790 @default.
- W2996281608 cites W2085936875 @default.
- W2996281608 cites W2092822170 @default.
- W2996281608 cites W2127684863 @default.
- W2996281608 cites W2159695345 @default.
- W2996281608 cites W2162923152 @default.
- W2996281608 cites W2237274417 @default.
- W2996281608 cites W2515141256 @default.
- W2996281608 cites W2607936150 @default.
- W2996281608 cites W2608161775 @default.
- W2996281608 cites W2608734796 @default.
- W2996281608 cites W2616036435 @default.
- W2996281608 cites W2664474963 @default.
- W2996281608 cites W2755273280 @default.
- W2996281608 cites W2769003702 @default.
- W2996281608 cites W2770435708 @default.
- W2996281608 cites W2789619879 @default.
- W2996281608 cites W2790795042 @default.
- W2996281608 cites W2793078684 @default.
- W2996281608 cites W2793699687 @default.
- W2996281608 cites W2800697505 @default.
- W2996281608 cites W2803146780 @default.
- W2996281608 cites W2806849333 @default.
- W2996281608 cites W2832636978 @default.
- W2996281608 cites W2895461322 @default.
- W2996281608 cites W2907851818 @default.
- W2996281608 cites W2912151410 @default.
- W2996281608 cites W2913569892 @default.
- W2996281608 cites W2916249914 @default.
- W2996281608 cites W2954181896 @default.
- W2996281608 cites W4233168668 @default.
- W2996281608 doi "https://doi.org/10.1016/j.scitotenv.2019.136146" @default.
- W2996281608 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31905585" @default.
- W2996281608 hasPublicationYear "2020" @default.
- W2996281608 type Work @default.
- W2996281608 sameAs 2996281608 @default.
- W2996281608 citedByCount "18" @default.
- W2996281608 countsByYear W29962816082019 @default.
- W2996281608 countsByYear W29962816082020 @default.
- W2996281608 countsByYear W29962816082021 @default.
- W2996281608 countsByYear W29962816082022 @default.
- W2996281608 countsByYear W29962816082023 @default.
- W2996281608 crossrefType "journal-article" @default.
- W2996281608 hasAuthorship W2996281608A5009884211 @default.
- W2996281608 hasAuthorship W2996281608A5011740024 @default.
- W2996281608 hasAuthorship W2996281608A5013944987 @default.
- W2996281608 hasAuthorship W2996281608A5015893806 @default.
- W2996281608 hasAuthorship W2996281608A5028255357 @default.
- W2996281608 hasAuthorship W2996281608A5039749154 @default.
- W2996281608 hasAuthorship W2996281608A5057791511 @default.
- W2996281608 hasAuthorship W2996281608A5072659014 @default.
- W2996281608 hasConcept C107872376 @default.
- W2996281608 hasConcept C111368507 @default.
- W2996281608 hasConcept C121332964 @default.
- W2996281608 hasConcept C126857682 @default.
- W2996281608 hasConcept C127313418 @default.
- W2996281608 hasConcept C1276947 @default.
- W2996281608 hasConcept C147789679 @default.
- W2996281608 hasConcept C153294291 @default.
- W2996281608 hasConcept C178790620 @default.
- W2996281608 hasConcept C185592680 @default.
- W2996281608 hasConcept C18903297 @default.
- W2996281608 hasConcept C193024070 @default.
- W2996281608 hasConcept C205649164 @default.
- W2996281608 hasConcept C24245907 @default.
- W2996281608 hasConcept C2776384668 @default.
- W2996281608 hasConcept C2778343803 @default.
- W2996281608 hasConcept C2778517922 @default.
- W2996281608 hasConcept C2779345167 @default.
- W2996281608 hasConcept C39432304 @default.