Matches in SemOpenAlex for { <https://semopenalex.org/work/W2996289939> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2996289939 endingPage "663" @default.
- W2996289939 startingPage "657" @default.
- W2996289939 abstract "ObjectiveRisk calculators and prediction models are available to assist clinicians and patients with peri-operative decision making to optimise outcomes. In a vascular surgical setting, the majority of these models is based on open AAA repair outcomes, and in general their clinical use is limited. The objective of this study was to develop and validate a simple and accurate vascular surgical risk prediction model.MethodsA national administrative database was accessed to collect information on all adult patients undergoing vascular surgery between 1 July 2011 and 30 June 2016 in New Zealand. The primary outcomes were mortality at 30 days, one year, and two years. Previously established covariables including American Society of Anaesthesiologists (ASA) physical status score, sex, surgical urgency, cancer status and ethnicity were tested, and other covariables such as smoking status, presence of renal failure, diabetes, anatomical site of operation, structure operated, and type of procedures (open or endovascular) were explored. LASSO regression was used to select variables for inclusion in the model.ResultsA total of 21 597 cases formed the final risk prediction models, with covariables including ASA score, gender, surgical urgency, cancer status, presence of renal failure, diabetes, anatomical site, structure operated, and endovascular procedure. The area under the receiver operating curve (AUROC) for 30 day, one year, and two year mortality using L-min model was 0.869, 0.833, and 0.824, respectively, demonstrating very good discrimination. Calibration with the validation dataset was also excellent, with slopes of 0.971, 1.129, and 1.011, respectively, and McFadden’s pseudo-R2 statistics of 0.250, 0.227, and 0.227, respectively.ConclusionA simple and accurate multivariable risk calculator for vascular surgical patients was developed and validated using the New Zealand national dataset, with excellent discrimination and calibration for 30 day, one year, and two year mortality. Risk calculators and prediction models are available to assist clinicians and patients with peri-operative decision making to optimise outcomes. In a vascular surgical setting, the majority of these models is based on open AAA repair outcomes, and in general their clinical use is limited. The objective of this study was to develop and validate a simple and accurate vascular surgical risk prediction model. A national administrative database was accessed to collect information on all adult patients undergoing vascular surgery between 1 July 2011 and 30 June 2016 in New Zealand. The primary outcomes were mortality at 30 days, one year, and two years. Previously established covariables including American Society of Anaesthesiologists (ASA) physical status score, sex, surgical urgency, cancer status and ethnicity were tested, and other covariables such as smoking status, presence of renal failure, diabetes, anatomical site of operation, structure operated, and type of procedures (open or endovascular) were explored. LASSO regression was used to select variables for inclusion in the model. A total of 21 597 cases formed the final risk prediction models, with covariables including ASA score, gender, surgical urgency, cancer status, presence of renal failure, diabetes, anatomical site, structure operated, and endovascular procedure. The area under the receiver operating curve (AUROC) for 30 day, one year, and two year mortality using L-min model was 0.869, 0.833, and 0.824, respectively, demonstrating very good discrimination. Calibration with the validation dataset was also excellent, with slopes of 0.971, 1.129, and 1.011, respectively, and McFadden’s pseudo-R2 statistics of 0.250, 0.227, and 0.227, respectively. A simple and accurate multivariable risk calculator for vascular surgical patients was developed and validated using the New Zealand national dataset, with excellent discrimination and calibration for 30 day, one year, and two year mortality." @default.
- W2996289939 created "2019-12-26" @default.
- W2996289939 creator A5006545188 @default.
- W2996289939 creator A5036161979 @default.
- W2996289939 creator A5077273318 @default.
- W2996289939 creator A5084947613 @default.
- W2996289939 date "2021-04-01" @default.
- W2996289939 modified "2023-09-27" @default.
- W2996289939 title "Editor's Choice – Development and Validation of a Multivariable Prediction Model of Peri-operative Mortality in Vascular Surgery: The New Zealand Vascular Surgical Risk Tool (NZRISK-VASC)" @default.
- W2996289939 cites W1552557715 @default.
- W2996289939 cites W1576039716 @default.
- W2996289939 cites W1988445584 @default.
- W2996289939 cites W1988769964 @default.
- W2996289939 cites W1994682257 @default.
- W2996289939 cites W1996361190 @default.
- W2996289939 cites W2064076120 @default.
- W2996289939 cites W2078271269 @default.
- W2996289939 cites W2088619646 @default.
- W2996289939 cites W2119910794 @default.
- W2996289939 cites W2138982156 @default.
- W2996289939 cites W2154286581 @default.
- W2996289939 cites W2156202966 @default.
- W2996289939 cites W2299665499 @default.
- W2996289939 cites W2330852467 @default.
- W2996289939 cites W2527340601 @default.
- W2996289939 cites W2763411456 @default.
- W2996289939 cites W2766927214 @default.
- W2996289939 cites W2797376049 @default.
- W2996289939 cites W2909648742 @default.
- W2996289939 cites W2966259815 @default.
- W2996289939 doi "https://doi.org/10.1016/j.ejvs.2020.12.008" @default.
- W2996289939 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33423913" @default.
- W2996289939 hasPublicationYear "2021" @default.
- W2996289939 type Work @default.
- W2996289939 sameAs 2996289939 @default.
- W2996289939 citedByCount "4" @default.
- W2996289939 countsByYear W29962899392022 @default.
- W2996289939 countsByYear W29962899392023 @default.
- W2996289939 crossrefType "journal-article" @default.
- W2996289939 hasAuthorship W2996289939A5006545188 @default.
- W2996289939 hasAuthorship W2996289939A5036161979 @default.
- W2996289939 hasAuthorship W2996289939A5077273318 @default.
- W2996289939 hasAuthorship W2996289939A5084947613 @default.
- W2996289939 hasBestOaLocation W29962899391 @default.
- W2996289939 hasConcept C126322002 @default.
- W2996289939 hasConcept C134018914 @default.
- W2996289939 hasConcept C141071460 @default.
- W2996289939 hasConcept C2777010666 @default.
- W2996289939 hasConcept C2778789114 @default.
- W2996289939 hasConcept C555293320 @default.
- W2996289939 hasConcept C58471807 @default.
- W2996289939 hasConcept C71924100 @default.
- W2996289939 hasConceptScore W2996289939C126322002 @default.
- W2996289939 hasConceptScore W2996289939C134018914 @default.
- W2996289939 hasConceptScore W2996289939C141071460 @default.
- W2996289939 hasConceptScore W2996289939C2777010666 @default.
- W2996289939 hasConceptScore W2996289939C2778789114 @default.
- W2996289939 hasConceptScore W2996289939C555293320 @default.
- W2996289939 hasConceptScore W2996289939C58471807 @default.
- W2996289939 hasConceptScore W2996289939C71924100 @default.
- W2996289939 hasFunder F4320320519 @default.
- W2996289939 hasFunder F4320320807 @default.
- W2996289939 hasIssue "4" @default.
- W2996289939 hasLocation W29962899391 @default.
- W2996289939 hasOpenAccess W2996289939 @default.
- W2996289939 hasPrimaryLocation W29962899391 @default.
- W2996289939 hasRelatedWork W1563850031 @default.
- W2996289939 hasRelatedWork W2003938723 @default.
- W2996289939 hasRelatedWork W2047967234 @default.
- W2996289939 hasRelatedWork W2118496982 @default.
- W2996289939 hasRelatedWork W2364998975 @default.
- W2996289939 hasRelatedWork W2369162477 @default.
- W2996289939 hasRelatedWork W2415759662 @default.
- W2996289939 hasRelatedWork W2439875401 @default.
- W2996289939 hasRelatedWork W4238867864 @default.
- W2996289939 hasRelatedWork W2525756941 @default.
- W2996289939 hasVolume "61" @default.
- W2996289939 isParatext "false" @default.
- W2996289939 isRetracted "false" @default.
- W2996289939 magId "2996289939" @default.
- W2996289939 workType "article" @default.