Matches in SemOpenAlex for { <https://semopenalex.org/work/W2996298487> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2996298487 endingPage "91" @default.
- W2996298487 startingPage "91" @default.
- W2996298487 abstract "Because one of the key issues in improving the performance of Speech Emotion Recognition (SER) systems is the choice of an effective feature representation, most of the research has focused on developing a feature level fusion using a large set of features. In our study, we propose a relatively low-dimensional feature set that combines three features: baseline Mel Frequency Cepstral Coefficients (MFCCs), MFCCs derived from Discrete Wavelet Transform (DWT) sub-band coefficients that are denoted as DMFCC, and pitch based features. Moreover, the performance of the proposed feature extraction method is evaluated in clean conditions and in the presence of several real-world noises. Furthermore, conventional Machine Learning (ML) and Deep Learning (DL) classifiers are employed for comparison. The proposal is tested using speech utterances of both of the Berlin German Emotional Database (EMO-DB) and Interactive Emotional Dyadic Motion Capture (IEMOCAP) speech databases through speaker independent experiments. Experimental results show improvement in speech emotion detection over baselines." @default.
- W2996298487 created "2019-12-26" @default.
- W2996298487 creator A5018353705 @default.
- W2996298487 creator A5032292618 @default.
- W2996298487 creator A5067618393 @default.
- W2996298487 creator A5084116140 @default.
- W2996298487 date "2019-12-13" @default.
- W2996298487 modified "2023-09-27" @default.
- W2996298487 title "An Investigation of a Feature-Level Fusion for Noisy Speech Emotion Recognition" @default.
- W2996298487 cites W1985177547 @default.
- W2996298487 cites W2000838212 @default.
- W2996298487 cites W2001619934 @default.
- W2996298487 cites W2051808731 @default.
- W2996298487 cites W2082492120 @default.
- W2996298487 cites W2092489135 @default.
- W2996298487 cites W2102953093 @default.
- W2996298487 cites W2115098197 @default.
- W2996298487 cites W2121551440 @default.
- W2996298487 cites W2126555167 @default.
- W2996298487 cites W2134554540 @default.
- W2996298487 cites W2137639365 @default.
- W2996298487 cites W2146334809 @default.
- W2996298487 cites W2148154194 @default.
- W2996298487 cites W2156503193 @default.
- W2996298487 cites W2168819043 @default.
- W2996298487 cites W2516037800 @default.
- W2996298487 cites W2580682631 @default.
- W2996298487 cites W2735586849 @default.
- W2996298487 cites W2737533753 @default.
- W2996298487 cites W2772958598 @default.
- W2996298487 cites W2773080983 @default.
- W2996298487 cites W2889445231 @default.
- W2996298487 cites W2889717020 @default.
- W2996298487 cites W2896691302 @default.
- W2996298487 cites W2901334240 @default.
- W2996298487 cites W2910591414 @default.
- W2996298487 cites W2918087949 @default.
- W2996298487 cites W2923073871 @default.
- W2996298487 cites W2974743569 @default.
- W2996298487 cites W4239510810 @default.
- W2996298487 doi "https://doi.org/10.3390/computers8040091" @default.
- W2996298487 hasPublicationYear "2019" @default.
- W2996298487 type Work @default.
- W2996298487 sameAs 2996298487 @default.
- W2996298487 citedByCount "13" @default.
- W2996298487 countsByYear W29962984872020 @default.
- W2996298487 countsByYear W29962984872021 @default.
- W2996298487 countsByYear W29962984872022 @default.
- W2996298487 countsByYear W29962984872023 @default.
- W2996298487 crossrefType "journal-article" @default.
- W2996298487 hasAuthorship W2996298487A5018353705 @default.
- W2996298487 hasAuthorship W2996298487A5032292618 @default.
- W2996298487 hasAuthorship W2996298487A5067618393 @default.
- W2996298487 hasAuthorship W2996298487A5084116140 @default.
- W2996298487 hasBestOaLocation W29962984871 @default.
- W2996298487 hasConcept C138885662 @default.
- W2996298487 hasConcept C151989614 @default.
- W2996298487 hasConcept C153180895 @default.
- W2996298487 hasConcept C154945302 @default.
- W2996298487 hasConcept C177264268 @default.
- W2996298487 hasConcept C199360897 @default.
- W2996298487 hasConcept C2776401178 @default.
- W2996298487 hasConcept C2777438025 @default.
- W2996298487 hasConcept C28490314 @default.
- W2996298487 hasConcept C41008148 @default.
- W2996298487 hasConcept C41895202 @default.
- W2996298487 hasConcept C52622490 @default.
- W2996298487 hasConceptScore W2996298487C138885662 @default.
- W2996298487 hasConceptScore W2996298487C151989614 @default.
- W2996298487 hasConceptScore W2996298487C153180895 @default.
- W2996298487 hasConceptScore W2996298487C154945302 @default.
- W2996298487 hasConceptScore W2996298487C177264268 @default.
- W2996298487 hasConceptScore W2996298487C199360897 @default.
- W2996298487 hasConceptScore W2996298487C2776401178 @default.
- W2996298487 hasConceptScore W2996298487C2777438025 @default.
- W2996298487 hasConceptScore W2996298487C28490314 @default.
- W2996298487 hasConceptScore W2996298487C41008148 @default.
- W2996298487 hasConceptScore W2996298487C41895202 @default.
- W2996298487 hasConceptScore W2996298487C52622490 @default.
- W2996298487 hasIssue "4" @default.
- W2996298487 hasLocation W29962984871 @default.
- W2996298487 hasOpenAccess W2996298487 @default.
- W2996298487 hasPrimaryLocation W29962984871 @default.
- W2996298487 hasRelatedWork W192324892 @default.
- W2996298487 hasRelatedWork W1994885532 @default.
- W2996298487 hasRelatedWork W2497697110 @default.
- W2996298487 hasRelatedWork W2546942002 @default.
- W2996298487 hasRelatedWork W2811390910 @default.
- W2996298487 hasRelatedWork W2887115625 @default.
- W2996298487 hasRelatedWork W3006133490 @default.
- W2996298487 hasRelatedWork W3126677997 @default.
- W2996298487 hasRelatedWork W3177335058 @default.
- W2996298487 hasRelatedWork W4385577165 @default.
- W2996298487 hasVolume "8" @default.
- W2996298487 isParatext "false" @default.
- W2996298487 isRetracted "false" @default.
- W2996298487 magId "2996298487" @default.
- W2996298487 workType "article" @default.