Matches in SemOpenAlex for { <https://semopenalex.org/work/W2996305488> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2996305488 abstract "This thesis provides a better understanding of the complex dynamics of high-frequency financial data. We develop a methodology that successfully and simultaneously character¬izes both the short and the long-term fluctuations latent in a time series. We extensively investigate the applications of the empirical mode decomposition (EMD) and the Hilbert transform to the analysis of intraday financial data. The applied methodology reveals the time-dependent amplitude and frequency attributes of non-stationary and non-linear time series. We uncover a scaling law that links the amplitude of the oscillating components to their respective period. We relate such scaling law to distinctive properties of financial markets. This research is relevant because financial data contain patterns specific to the observa¬tion frequency and are thus, of interest to different type of market agents (market traders, intraday traders, hedging strategist, portfolio managers and institutional investors), each characterized by a different reaction time to new information and by the frequency of its intervention in the market. Understanding how the investment horizons of these agents in¬teract may reveal significant details about the physical processes that generate or influence financial time series. We use the EMD to estimate volatility, generalising the idea of the popular realised volatility estimator by decomposing financial time series into several timescales compo¬nents which are related to different investment horizons. We also investigate the dynamic correlation at different timescales and at different time-lags, revealing a complex structure of financial signals. Following the multiscale analysis approach, we propose a novel empirical method to es¬timate a time-dependent scaling parameter in analogy to the scaling exponent for self-similar processes. Using numerical simulations, we investigate the robustness of our estimator to heavy-tailed distributions. We apply the scaling estimator to intraday stock market prices and uncover scaling properties which differ from what would be expected from a random walk. We also introduce a novel entropy-like measure which estimates the regularity of a time series. This measure of complexity can be used to identify periods of high and low volatility x which could help investors to choose the appropriate time for investment. Finally, we pro¬pose a multistep-ahead forecasting framework based on EMD combined with support vector regression. The originality of our models is the inclusion of a coarse-to-fine reconstruction step to analyse the forecasting capabilities of a combination of oscillating functions. We compare our models with popular benchmark models which do not use the EMD as a pre¬processing tool, obtaining better results with our proposed framework. Part of the research developed on this thesis is published in Physica A: Statistical Me¬chanics and its Applications [137] and in the European Physical Journal, Special Topics [136]. It was also presented at international conferences, including the 20th annual work¬shop on the Economic Science with Heterogeneous Interacting Agents (WEHIA) 2015 and the 21st Computing in Economics and Finance (CEF) conference 2015." @default.
- W2996305488 created "2019-12-26" @default.
- W2996305488 creator A5083953596 @default.
- W2996305488 date "2016-10-28" @default.
- W2996305488 modified "2023-09-24" @default.
- W2996305488 title "Analysis of high-frequency financial data over different timescales: a Hilbert-Huang transform approach" @default.
- W2996305488 cites W1966795804 @default.
- W2996305488 cites W1975783225 @default.
- W2996305488 cites W1983384974 @default.
- W2996305488 cites W1986478348 @default.
- W2996305488 cites W1988845048 @default.
- W2996305488 cites W1991149707 @default.
- W2996305488 cites W2034139177 @default.
- W2996305488 cites W2039240409 @default.
- W2996305488 cites W2062502821 @default.
- W2996305488 cites W2066413774 @default.
- W2996305488 cites W2080713461 @default.
- W2996305488 cites W2108855171 @default.
- W2996305488 cites W2120390927 @default.
- W2996305488 cites W2156909104 @default.
- W2996305488 cites W2159399339 @default.
- W2996305488 cites W2160097539 @default.
- W2996305488 cites W2173306896 @default.
- W2996305488 cites W1857789879 @default.
- W2996305488 cites W2153271406 @default.
- W2996305488 hasPublicationYear "2016" @default.
- W2996305488 type Work @default.
- W2996305488 sameAs 2996305488 @default.
- W2996305488 citedByCount "0" @default.
- W2996305488 crossrefType "dissertation" @default.
- W2996305488 hasAuthorship W2996305488A5083953596 @default.
- W2996305488 hasConcept C10138342 @default.
- W2996305488 hasConcept C105795698 @default.
- W2996305488 hasConcept C106159729 @default.
- W2996305488 hasConcept C112633086 @default.
- W2996305488 hasConcept C114118609 @default.
- W2996305488 hasConcept C149782125 @default.
- W2996305488 hasConcept C162324750 @default.
- W2996305488 hasConcept C185429906 @default.
- W2996305488 hasConcept C19244329 @default.
- W2996305488 hasConcept C2524010 @default.
- W2996305488 hasConcept C25570617 @default.
- W2996305488 hasConcept C2780821815 @default.
- W2996305488 hasConcept C33923547 @default.
- W2996305488 hasConcept C41008148 @default.
- W2996305488 hasConcept C76155785 @default.
- W2996305488 hasConcept C91602232 @default.
- W2996305488 hasConcept C99844830 @default.
- W2996305488 hasConceptScore W2996305488C10138342 @default.
- W2996305488 hasConceptScore W2996305488C105795698 @default.
- W2996305488 hasConceptScore W2996305488C106159729 @default.
- W2996305488 hasConceptScore W2996305488C112633086 @default.
- W2996305488 hasConceptScore W2996305488C114118609 @default.
- W2996305488 hasConceptScore W2996305488C149782125 @default.
- W2996305488 hasConceptScore W2996305488C162324750 @default.
- W2996305488 hasConceptScore W2996305488C185429906 @default.
- W2996305488 hasConceptScore W2996305488C19244329 @default.
- W2996305488 hasConceptScore W2996305488C2524010 @default.
- W2996305488 hasConceptScore W2996305488C25570617 @default.
- W2996305488 hasConceptScore W2996305488C2780821815 @default.
- W2996305488 hasConceptScore W2996305488C33923547 @default.
- W2996305488 hasConceptScore W2996305488C41008148 @default.
- W2996305488 hasConceptScore W2996305488C76155785 @default.
- W2996305488 hasConceptScore W2996305488C91602232 @default.
- W2996305488 hasConceptScore W2996305488C99844830 @default.
- W2996305488 hasLocation W29963054881 @default.
- W2996305488 hasOpenAccess W2996305488 @default.
- W2996305488 hasPrimaryLocation W29963054881 @default.
- W2996305488 hasRelatedWork W1563702280 @default.
- W2996305488 hasRelatedWork W1655284544 @default.
- W2996305488 hasRelatedWork W172953151 @default.
- W2996305488 hasRelatedWork W1806663855 @default.
- W2996305488 hasRelatedWork W1995614904 @default.
- W2996305488 hasRelatedWork W2139581634 @default.
- W2996305488 hasRelatedWork W2203943430 @default.
- W2996305488 hasRelatedWork W2899746030 @default.
- W2996305488 hasRelatedWork W2900156316 @default.
- W2996305488 hasRelatedWork W2965168328 @default.
- W2996305488 hasRelatedWork W3038970853 @default.
- W2996305488 hasRelatedWork W3106210107 @default.
- W2996305488 hasRelatedWork W3121477794 @default.
- W2996305488 hasRelatedWork W3151858000 @default.
- W2996305488 hasRelatedWork W3189911589 @default.
- W2996305488 hasRelatedWork W3205559049 @default.
- W2996305488 hasRelatedWork W647870097 @default.
- W2996305488 hasRelatedWork W81107170 @default.
- W2996305488 hasRelatedWork W1915694674 @default.
- W2996305488 isParatext "false" @default.
- W2996305488 isRetracted "false" @default.
- W2996305488 magId "2996305488" @default.
- W2996305488 workType "dissertation" @default.