Matches in SemOpenAlex for { <https://semopenalex.org/work/W2996330493> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2996330493 abstract "With the advent of computational intelligence, the analysis of medical data using machine learning techniques benefits accurate classification of different health diseases and disorders. However, disorganization and variability of data make the job difficult. This paper has streamlined an ensemble learning approach for classification of low back pain disorder based on spinal abnormality data of 310 patients with 12 features. To overwhelm the misleading effect of inappropriate attributes, most influential features are identified using evolutionary feature elimination method. Experiments are performed in both way‒ with or without feature filtering. The basic machine learning algorithms used in the work: Logistic regression, Decision Tree, Naive Bayes, and in addition to the Random Forest ensemble learning method. Random Forest classifier, as expected, is recorded to exhibit the best accuracy of 94% over other classifiers." @default.
- W2996330493 created "2019-12-26" @default.
- W2996330493 creator A5009607101 @default.
- W2996330493 creator A5030121667 @default.
- W2996330493 creator A5089403271 @default.
- W2996330493 date "2019-05-01" @default.
- W2996330493 modified "2023-09-27" @default.
- W2996330493 title "Feature Selection and Classification of Spinal Abnormalities to Detect Low Back Pain Disorder using Machine Learning Approaches" @default.
- W2996330493 cites W1973944510 @default.
- W2996330493 cites W1981696121 @default.
- W2996330493 cites W2003618393 @default.
- W2996330493 cites W2040702235 @default.
- W2996330493 cites W2061748654 @default.
- W2996330493 cites W2097379642 @default.
- W2996330493 cites W2103137694 @default.
- W2996330493 cites W2144792090 @default.
- W2996330493 cites W2165014123 @default.
- W2996330493 cites W2612188380 @default.
- W2996330493 cites W2763061560 @default.
- W2996330493 cites W2770260636 @default.
- W2996330493 cites W2773661519 @default.
- W2996330493 doi "https://doi.org/10.1109/icasert.2019.8934683" @default.
- W2996330493 hasPublicationYear "2019" @default.
- W2996330493 type Work @default.
- W2996330493 sameAs 2996330493 @default.
- W2996330493 citedByCount "1" @default.
- W2996330493 countsByYear W29963304932022 @default.
- W2996330493 crossrefType "proceedings-article" @default.
- W2996330493 hasAuthorship W2996330493A5009607101 @default.
- W2996330493 hasAuthorship W2996330493A5030121667 @default.
- W2996330493 hasAuthorship W2996330493A5089403271 @default.
- W2996330493 hasConcept C110083411 @default.
- W2996330493 hasConcept C119857082 @default.
- W2996330493 hasConcept C138885662 @default.
- W2996330493 hasConcept C142724271 @default.
- W2996330493 hasConcept C148483581 @default.
- W2996330493 hasConcept C153180895 @default.
- W2996330493 hasConcept C154945302 @default.
- W2996330493 hasConcept C204787440 @default.
- W2996330493 hasConcept C2776401178 @default.
- W2996330493 hasConcept C2780907711 @default.
- W2996330493 hasConcept C41008148 @default.
- W2996330493 hasConcept C41895202 @default.
- W2996330493 hasConcept C52622490 @default.
- W2996330493 hasConcept C71924100 @default.
- W2996330493 hasConcept C81917197 @default.
- W2996330493 hasConceptScore W2996330493C110083411 @default.
- W2996330493 hasConceptScore W2996330493C119857082 @default.
- W2996330493 hasConceptScore W2996330493C138885662 @default.
- W2996330493 hasConceptScore W2996330493C142724271 @default.
- W2996330493 hasConceptScore W2996330493C148483581 @default.
- W2996330493 hasConceptScore W2996330493C153180895 @default.
- W2996330493 hasConceptScore W2996330493C154945302 @default.
- W2996330493 hasConceptScore W2996330493C204787440 @default.
- W2996330493 hasConceptScore W2996330493C2776401178 @default.
- W2996330493 hasConceptScore W2996330493C2780907711 @default.
- W2996330493 hasConceptScore W2996330493C41008148 @default.
- W2996330493 hasConceptScore W2996330493C41895202 @default.
- W2996330493 hasConceptScore W2996330493C52622490 @default.
- W2996330493 hasConceptScore W2996330493C71924100 @default.
- W2996330493 hasConceptScore W2996330493C81917197 @default.
- W2996330493 hasLocation W29963304931 @default.
- W2996330493 hasOpenAccess W2996330493 @default.
- W2996330493 hasPrimaryLocation W29963304931 @default.
- W2996330493 hasRelatedWork W2016461833 @default.
- W2996330493 hasRelatedWork W2022684485 @default.
- W2996330493 hasRelatedWork W2314710578 @default.
- W2996330493 hasRelatedWork W2515280043 @default.
- W2996330493 hasRelatedWork W2592385986 @default.
- W2996330493 hasRelatedWork W2699360047 @default.
- W2996330493 hasRelatedWork W2962729745 @default.
- W2996330493 hasRelatedWork W3185455591 @default.
- W2996330493 hasRelatedWork W3197541072 @default.
- W2996330493 hasRelatedWork W2345184372 @default.
- W2996330493 isParatext "false" @default.
- W2996330493 isRetracted "false" @default.
- W2996330493 magId "2996330493" @default.
- W2996330493 workType "article" @default.