Matches in SemOpenAlex for { <https://semopenalex.org/work/W2996352013> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2996352013 endingPage "104491" @default.
- W2996352013 startingPage "104491" @default.
- W2996352013 abstract "Portable energy-dispersive X-ray fluorescence (PXRF) analyzers are routinely used to generate large elemental datasets in sedimentary strata. These data provide the basis for assessing stratigraphic changes in geochemistry, bulk mineralogy, and paleo-redox conditions. The manufacturer provided procedure used to calculate elemental concentrations from PXRF photon counts that was developed for siliciclastic mudrocks. This quantification is, however, routinely applied to other sedimentary rocks, such as carbonates, which often have very different elemental concentrations and rock textures. The current study reports elemental concentration data from 57 limestone and dolomite rock samples measured by both PXRF and conventional geochemical analyses including inductively coupled plasma-mass spectrometry (ICP-MS), inductively coupled plasma - optical emission spectrometry (ICP-OES), and wavelength-dispersive X-ray fluorescence (WD-XRF). Carbonate samples were subdivided into two groups. The calibration set (N = 43) is used to establish a carbonate-specific PXRF quantification procedure, and to investigate the effects of different sample preparation techniques. The validation set (N = 14) is used to evaluate the applicability of both the newly developed carbonate-specific quantification procedure and the existing mudrock quantification procedure for the carbonate rock suite. PXRF measured photon counts in the calibration set exhibit strong positive linear correlations (R2 = 1–0.76) with the elemental concentrations independently measured from ICP-MS and/or ICP-OES, and WD-XRF. These linear relationships were used to calculate elemental concentrations in the validation set, which were then statistically compared with the measured elemental concentrations. Results of the carbonate-specific quantification procedure show that 13 elements (Mg, Al, Si, P, K, Ca, Ti, Mn, Fe, Rb, Sr, Y, and Zr) in the carbonate validation set are quantified with PXRF at the definitive data quality level. The mudrock-based quantification procedure, in contrast, quantified only 4 elements at the definite data quality level (Si, K, Ca, and Zr), suggesting that carbonate-specific calibration should be used to ensure higher data quality. The results from the sample preparation experiments exhibit different linear regressions for whole rock, loose powders, pressed powder pellets, and fused discs. The results of this study show that (i) PXRF can reliably identify and accurately quantify the concentrations of 13 common rock-forming elements in carbonate rocks; (ii) the carbonate-specific quantification procedure provides a higher level of data quality for carbonate rocks compared to the mudrock-based quantification; (iii) carbonate rock samples are inherently heterogeneous and thus require more intensive sample preparation and advanced statistical methods to account for this in the quantification procedure; and (iv) the matrix effect that results from different sample preparations must be accounted for in the quantification procedure." @default.
- W2996352013 created "2019-12-26" @default.
- W2996352013 creator A5052376283 @default.
- W2996352013 creator A5052471287 @default.
- W2996352013 date "2020-02-01" @default.
- W2996352013 modified "2023-09-26" @default.
- W2996352013 title "A new carbonate-specific quantification procedure for determining elemental concentrations from portable energy-dispersive X-ray fluorescence (PXRF) data" @default.
- W2996352013 cites W1995321821 @default.
- W2996352013 cites W2057391595 @default.
- W2996352013 cites W2080756782 @default.
- W2996352013 cites W2101652245 @default.
- W2996352013 cites W2104212452 @default.
- W2996352013 cites W2140938630 @default.
- W2996352013 cites W2158904799 @default.
- W2996352013 cites W2166926840 @default.
- W2996352013 cites W2260213042 @default.
- W2996352013 cites W2597811750 @default.
- W2996352013 cites W2750487160 @default.
- W2996352013 cites W2783004461 @default.
- W2996352013 cites W2885006925 @default.
- W2996352013 cites W2900369388 @default.
- W2996352013 cites W2951067880 @default.
- W2996352013 doi "https://doi.org/10.1016/j.apgeochem.2019.104491" @default.
- W2996352013 hasPublicationYear "2020" @default.
- W2996352013 type Work @default.
- W2996352013 sameAs 2996352013 @default.
- W2996352013 citedByCount "10" @default.
- W2996352013 countsByYear W29963520132021 @default.
- W2996352013 countsByYear W29963520132022 @default.
- W2996352013 countsByYear W29963520132023 @default.
- W2996352013 crossrefType "journal-article" @default.
- W2996352013 hasAuthorship W2996352013A5052376283 @default.
- W2996352013 hasAuthorship W2996352013A5052471287 @default.
- W2996352013 hasBestOaLocation W29963520131 @default.
- W2996352013 hasConcept C105795698 @default.
- W2996352013 hasConcept C107872376 @default.
- W2996352013 hasConcept C113196181 @default.
- W2996352013 hasConcept C121332964 @default.
- W2996352013 hasConcept C127313418 @default.
- W2996352013 hasConcept C162356407 @default.
- W2996352013 hasConcept C165697059 @default.
- W2996352013 hasConcept C165838908 @default.
- W2996352013 hasConcept C178790620 @default.
- W2996352013 hasConcept C179104552 @default.
- W2996352013 hasConcept C185592680 @default.
- W2996352013 hasConcept C199289684 @default.
- W2996352013 hasConcept C2778576202 @default.
- W2996352013 hasConcept C2780181037 @default.
- W2996352013 hasConcept C2780659211 @default.
- W2996352013 hasConcept C33923547 @default.
- W2996352013 hasConcept C43617362 @default.
- W2996352013 hasConcept C62520636 @default.
- W2996352013 hasConcept C64885871 @default.
- W2996352013 hasConcept C82706917 @default.
- W2996352013 hasConcept C95974651 @default.
- W2996352013 hasConceptScore W2996352013C105795698 @default.
- W2996352013 hasConceptScore W2996352013C107872376 @default.
- W2996352013 hasConceptScore W2996352013C113196181 @default.
- W2996352013 hasConceptScore W2996352013C121332964 @default.
- W2996352013 hasConceptScore W2996352013C127313418 @default.
- W2996352013 hasConceptScore W2996352013C162356407 @default.
- W2996352013 hasConceptScore W2996352013C165697059 @default.
- W2996352013 hasConceptScore W2996352013C165838908 @default.
- W2996352013 hasConceptScore W2996352013C178790620 @default.
- W2996352013 hasConceptScore W2996352013C179104552 @default.
- W2996352013 hasConceptScore W2996352013C185592680 @default.
- W2996352013 hasConceptScore W2996352013C199289684 @default.
- W2996352013 hasConceptScore W2996352013C2778576202 @default.
- W2996352013 hasConceptScore W2996352013C2780181037 @default.
- W2996352013 hasConceptScore W2996352013C2780659211 @default.
- W2996352013 hasConceptScore W2996352013C33923547 @default.
- W2996352013 hasConceptScore W2996352013C43617362 @default.
- W2996352013 hasConceptScore W2996352013C62520636 @default.
- W2996352013 hasConceptScore W2996352013C64885871 @default.
- W2996352013 hasConceptScore W2996352013C82706917 @default.
- W2996352013 hasConceptScore W2996352013C95974651 @default.
- W2996352013 hasFunder F4320306076 @default.
- W2996352013 hasLocation W29963520131 @default.
- W2996352013 hasOpenAccess W2996352013 @default.
- W2996352013 hasPrimaryLocation W29963520131 @default.
- W2996352013 hasRelatedWork W1972707305 @default.
- W2996352013 hasRelatedWork W1984970396 @default.
- W2996352013 hasRelatedWork W2090189807 @default.
- W2996352013 hasRelatedWork W2271948761 @default.
- W2996352013 hasRelatedWork W2368840510 @default.
- W2996352013 hasRelatedWork W2390366546 @default.
- W2996352013 hasRelatedWork W2996352013 @default.
- W2996352013 hasRelatedWork W3041800897 @default.
- W2996352013 hasRelatedWork W4427527 @default.
- W2996352013 hasRelatedWork W2527440249 @default.
- W2996352013 hasVolume "113" @default.
- W2996352013 isParatext "false" @default.
- W2996352013 isRetracted "false" @default.
- W2996352013 magId "2996352013" @default.
- W2996352013 workType "article" @default.