Matches in SemOpenAlex for { <https://semopenalex.org/work/W2996376220> ?p ?o ?g. }
- W2996376220 endingPage "92" @default.
- W2996376220 startingPage "81" @default.
- W2996376220 abstract "Glass composition-based correlations of volcanic ash (tephra) traditionally rely on extensive manual plotting. Many previous statistical methods for testing correlations are limited by using geochemical means, masking diagnostic variability. We suggest that machine learning classifiers can expedite correlation, quickly narrowing the list of likely candidates using well-trained models. Eruptives from Alaska's Aleutian Arc-Alaska Peninsula and Wrangell volcanic field were used as a test environment for 11 supervised classification algorithms, trained on nearly 2000 electron probe microanalysis measurements of glass major oxides, representing 10 volcanic sources. Artificial neural networks and random forests were consistently among the top-performing learners (accuracy and kappa > 0.96). Their combination as an average ensemble effectively improves their performance. Using this combined model on tephras from Eklutna Lake, south-central Alaska, showed that predictions match traditional methods and can speed correlation. Although classifiers are useful tools, they should aid expert analysis, not replace it. The Eklutna Lake tephras are mostly from Redoubt Volcano. Besides tephras from known Holocene-active sources, Holocene tephra geochemically consistent with Pleistocene Emmons Lake Volcanic Center (Dawson tephra), but from a yet unknown source, is evident. These tephras are mostly anchored by a highly resolved varved chronology and represent new important regional stratigraphic markers." @default.
- W2996376220 created "2019-12-26" @default.
- W2996376220 creator A5002143100 @default.
- W2996376220 creator A5030283809 @default.
- W2996376220 creator A5049456857 @default.
- W2996376220 creator A5055146432 @default.
- W2996376220 creator A5062944702 @default.
- W2996376220 creator A5068218211 @default.
- W2996376220 creator A5087395447 @default.
- W2996376220 date "2019-12-11" @default.
- W2996376220 modified "2023-10-17" @default.
- W2996376220 title "Machine learning classifiers for attributing tephra to source volcanoes: an evaluation of methods for Alaska tephras" @default.
- W2996376220 cites W1513618424 @default.
- W2996376220 cites W1559314423 @default.
- W2996376220 cites W1588462640 @default.
- W2996376220 cites W179847607 @default.
- W2996376220 cites W1831050183 @default.
- W2996376220 cites W1971847097 @default.
- W2996376220 cites W1975316228 @default.
- W2996376220 cites W1981661000 @default.
- W2996376220 cites W1984488218 @default.
- W2996376220 cites W2000023571 @default.
- W2996376220 cites W200172807 @default.
- W2996376220 cites W2015419922 @default.
- W2996376220 cites W2015779193 @default.
- W2996376220 cites W2016585624 @default.
- W2996376220 cites W2020266489 @default.
- W2996376220 cites W2021752826 @default.
- W2996376220 cites W2037397513 @default.
- W2996376220 cites W2038301630 @default.
- W2996376220 cites W2039328746 @default.
- W2996376220 cites W2041685910 @default.
- W2996376220 cites W2045365802 @default.
- W2996376220 cites W2049425791 @default.
- W2996376220 cites W2049826301 @default.
- W2996376220 cites W2066325846 @default.
- W2996376220 cites W2073089862 @default.
- W2996376220 cites W2073919821 @default.
- W2996376220 cites W2075221763 @default.
- W2996376220 cites W2083629410 @default.
- W2996376220 cites W2088439596 @default.
- W2996376220 cites W2093021861 @default.
- W2996376220 cites W2098824882 @default.
- W2996376220 cites W2101849231 @default.
- W2996376220 cites W2118202495 @default.
- W2996376220 cites W2132870739 @default.
- W2996376220 cites W2137591261 @default.
- W2996376220 cites W2146194630 @default.
- W2996376220 cites W2157099954 @default.
- W2996376220 cites W2157963336 @default.
- W2996376220 cites W2167452694 @default.
- W2996376220 cites W2170357552 @default.
- W2996376220 cites W2172000360 @default.
- W2996376220 cites W2343681342 @default.
- W2996376220 cites W2362896816 @default.
- W2996376220 cites W23663961 @default.
- W2996376220 cites W2437341502 @default.
- W2996376220 cites W2487087946 @default.
- W2996376220 cites W2575727525 @default.
- W2996376220 cites W2752702595 @default.
- W2996376220 cites W2755582632 @default.
- W2996376220 cites W2770787834 @default.
- W2996376220 cites W2778722258 @default.
- W2996376220 cites W2787894218 @default.
- W2996376220 cites W28412257 @default.
- W2996376220 cites W2901737901 @default.
- W2996376220 cites W3098040851 @default.
- W2996376220 cites W3104887532 @default.
- W2996376220 cites W34176136 @default.
- W2996376220 cites W4241412941 @default.
- W2996376220 cites W4249751050 @default.
- W2996376220 cites W429766147 @default.
- W2996376220 cites W970829957 @default.
- W2996376220 doi "https://doi.org/10.1002/jqs.3170" @default.
- W2996376220 hasPublicationYear "2019" @default.
- W2996376220 type Work @default.
- W2996376220 sameAs 2996376220 @default.
- W2996376220 citedByCount "20" @default.
- W2996376220 countsByYear W29963762202020 @default.
- W2996376220 countsByYear W29963762202021 @default.
- W2996376220 countsByYear W29963762202022 @default.
- W2996376220 countsByYear W29963762202023 @default.
- W2996376220 crossrefType "journal-article" @default.
- W2996376220 hasAuthorship W2996376220A5002143100 @default.
- W2996376220 hasAuthorship W2996376220A5030283809 @default.
- W2996376220 hasAuthorship W2996376220A5049456857 @default.
- W2996376220 hasAuthorship W2996376220A5055146432 @default.
- W2996376220 hasAuthorship W2996376220A5062944702 @default.
- W2996376220 hasAuthorship W2996376220A5068218211 @default.
- W2996376220 hasAuthorship W2996376220A5087395447 @default.
- W2996376220 hasConcept C120806208 @default.
- W2996376220 hasConcept C127313418 @default.
- W2996376220 hasConcept C165205528 @default.
- W2996376220 hasConcept C17409809 @default.
- W2996376220 hasConcept C1965285 @default.
- W2996376220 hasConcept C87457978 @default.
- W2996376220 hasConceptScore W2996376220C120806208 @default.
- W2996376220 hasConceptScore W2996376220C127313418 @default.