Matches in SemOpenAlex for { <https://semopenalex.org/work/W2996416664> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2996416664 endingPage "184302" @default.
- W2996416664 startingPage "184294" @default.
- W2996416664 abstract "Bayesian Optimization has been widely used along with Gaussian Processes for solving expensive-to-evaluate black-box optimization problems. Overall, this approach has shown good results, and particularly for parameter tuning of machine learning algorithms. Nonetheless, Bayesian Optimization has to be also configured to achieve the best possible performance, being the selection of the kernel function a crucial choice. This paper investigates the convenience of adaptively changing the kernel function during the optimization process, instead of fixing it a priori. Six adaptive kernel selection strategies are introduced and tested in well-known synthetic and real-world optimization problems. In order to provide a more complete evaluation of the proposed kernel selection variants, two major kernel parameter setting approaches have been tested. According to our results, apart from having the advantage of removing the selection of the kernel out of the equation, adaptive kernel selection criteria show a better performance than fixed-kernel approaches." @default.
- W2996416664 created "2019-12-26" @default.
- W2996416664 creator A5001059406 @default.
- W2996416664 creator A5034080501 @default.
- W2996416664 creator A5050500830 @default.
- W2996416664 creator A5051966806 @default.
- W2996416664 date "2019-01-01" @default.
- W2996416664 modified "2023-10-13" @default.
- W2996416664 title "An Experimental Study in Adaptive Kernel Selection for Bayesian Optimization" @default.
- W2996416664 cites W1510052597 @default.
- W2996416664 cites W1736528465 @default.
- W2996416664 cites W1840389249 @default.
- W2996416664 cites W1988696933 @default.
- W2996416664 cites W1991142852 @default.
- W2996416664 cites W2016904445 @default.
- W2996416664 cites W2022036147 @default.
- W2996416664 cites W2061144551 @default.
- W2996416664 cites W2110930696 @default.
- W2996416664 cites W2136816045 @default.
- W2996416664 cites W2139929624 @default.
- W2996416664 cites W2151238122 @default.
- W2996416664 cites W2166566250 @default.
- W2996416664 cites W2189149359 @default.
- W2996416664 cites W2594788739 @default.
- W2996416664 cites W4247128285 @default.
- W2996416664 doi "https://doi.org/10.1109/access.2019.2960498" @default.
- W2996416664 hasPublicationYear "2019" @default.
- W2996416664 type Work @default.
- W2996416664 sameAs 2996416664 @default.
- W2996416664 citedByCount "7" @default.
- W2996416664 countsByYear W29964166642021 @default.
- W2996416664 countsByYear W29964166642022 @default.
- W2996416664 countsByYear W29964166642023 @default.
- W2996416664 crossrefType "journal-article" @default.
- W2996416664 hasAuthorship W2996416664A5001059406 @default.
- W2996416664 hasAuthorship W2996416664A5034080501 @default.
- W2996416664 hasAuthorship W2996416664A5050500830 @default.
- W2996416664 hasAuthorship W2996416664A5051966806 @default.
- W2996416664 hasBestOaLocation W29964166641 @default.
- W2996416664 hasConcept C114614502 @default.
- W2996416664 hasConcept C119857082 @default.
- W2996416664 hasConcept C121332964 @default.
- W2996416664 hasConcept C122280245 @default.
- W2996416664 hasConcept C12267149 @default.
- W2996416664 hasConcept C126255220 @default.
- W2996416664 hasConcept C134517425 @default.
- W2996416664 hasConcept C154945302 @default.
- W2996416664 hasConcept C163716315 @default.
- W2996416664 hasConcept C195699287 @default.
- W2996416664 hasConcept C2778049539 @default.
- W2996416664 hasConcept C33923547 @default.
- W2996416664 hasConcept C41008148 @default.
- W2996416664 hasConcept C61326573 @default.
- W2996416664 hasConcept C62520636 @default.
- W2996416664 hasConcept C74193536 @default.
- W2996416664 hasConcept C81917197 @default.
- W2996416664 hasConceptScore W2996416664C114614502 @default.
- W2996416664 hasConceptScore W2996416664C119857082 @default.
- W2996416664 hasConceptScore W2996416664C121332964 @default.
- W2996416664 hasConceptScore W2996416664C122280245 @default.
- W2996416664 hasConceptScore W2996416664C12267149 @default.
- W2996416664 hasConceptScore W2996416664C126255220 @default.
- W2996416664 hasConceptScore W2996416664C134517425 @default.
- W2996416664 hasConceptScore W2996416664C154945302 @default.
- W2996416664 hasConceptScore W2996416664C163716315 @default.
- W2996416664 hasConceptScore W2996416664C195699287 @default.
- W2996416664 hasConceptScore W2996416664C2778049539 @default.
- W2996416664 hasConceptScore W2996416664C33923547 @default.
- W2996416664 hasConceptScore W2996416664C41008148 @default.
- W2996416664 hasConceptScore W2996416664C61326573 @default.
- W2996416664 hasConceptScore W2996416664C62520636 @default.
- W2996416664 hasConceptScore W2996416664C74193536 @default.
- W2996416664 hasConceptScore W2996416664C81917197 @default.
- W2996416664 hasLocation W29964166641 @default.
- W2996416664 hasLocation W29964166642 @default.
- W2996416664 hasOpenAccess W2996416664 @default.
- W2996416664 hasPrimaryLocation W29964166641 @default.
- W2996416664 hasRelatedWork W1984421104 @default.
- W2996416664 hasRelatedWork W2071590642 @default.
- W2996416664 hasRelatedWork W2079825755 @default.
- W2996416664 hasRelatedWork W2095626363 @default.
- W2996416664 hasRelatedWork W2127229869 @default.
- W2996416664 hasRelatedWork W2366185040 @default.
- W2996416664 hasRelatedWork W2393746448 @default.
- W2996416664 hasRelatedWork W2534603691 @default.
- W2996416664 hasRelatedWork W2535206775 @default.
- W2996416664 hasRelatedWork W3123056048 @default.
- W2996416664 hasVolume "7" @default.
- W2996416664 isParatext "false" @default.
- W2996416664 isRetracted "false" @default.
- W2996416664 magId "2996416664" @default.
- W2996416664 workType "article" @default.