Matches in SemOpenAlex for { <https://semopenalex.org/work/W2996444511> ?p ?o ?g. }
- W2996444511 endingPage "136068" @default.
- W2996444511 startingPage "136068" @default.
- W2996444511 abstract "The urban heat island is a vastly documented climatological phenomenon, but when it comes to coastal cities, close to desert areas, its analysis becomes extremely challenging, given the high temporal variability and spatial heterogeneity. The strong dependency on the synoptic weather conditions, rather than on city-specific, constant features, hinders the identification of recurrent patterns, leading conventional predicting algorithms to fail. In this paper, an advanced artificial intelligence technique based on long short-term memory (LSTM) model is applied to gain insight and predict the highly fluctuating heat island intensity (UHII) in the city of Sydney, Australia, governed by the dualistic system of cool sea breeze from the ocean and hot western winds from the vast desert biome inlands. Hourly measurements of temperature, collected for a period of 18 years (1999–2017) from 8 different sites in a 50 km radius from the coastline, were used to train (80%) and test (20%) the model. Other inputs included date, time, and previously computed UHII, feedbacked to the model with an optimized time step of six hours. A second set of models integrated wind speed at the reference station to account for the sea breeze effect. The R2 ranged between 0.770 and 0.932 for the training dataset and between 0.841 and 0.924 for the testing dataset, with the best performance attained right in correspondence of the city hot spots. Unexpectedly, very little benefit (0.06–0.43%) was achieved by including the sea breeze among the input variables. Overall, this study is insightful of a rather rare climatological case at the watershed between maritime and desertic typicality. We proved that accurate UHII predictions can be achieved by learning from long-term air temperature records, provided that an appropriate predicting architecture is utilized." @default.
- W2996444511 created "2019-12-26" @default.
- W2996444511 creator A5003432414 @default.
- W2996444511 creator A5004359941 @default.
- W2996444511 creator A5008733471 @default.
- W2996444511 creator A5022061676 @default.
- W2996444511 creator A5044783062 @default.
- W2996444511 creator A5062112628 @default.
- W2996444511 creator A5069440741 @default.
- W2996444511 creator A5073000384 @default.
- W2996444511 date "2020-03-01" @default.
- W2996444511 modified "2023-10-16" @default.
- W2996444511 title "Predicting the magnitude and the characteristics of the urban heat island in coastal cities in the proximity of desert landforms. The case of Sydney" @default.
- W2996444511 cites W1606661937 @default.
- W2996444511 cites W1964298122 @default.
- W2996444511 cites W1964781823 @default.
- W2996444511 cites W1967086383 @default.
- W2996444511 cites W1975268814 @default.
- W2996444511 cites W1977868552 @default.
- W2996444511 cites W1986615132 @default.
- W2996444511 cites W1988446509 @default.
- W2996444511 cites W1996736186 @default.
- W2996444511 cites W2000508590 @default.
- W2996444511 cites W2000716539 @default.
- W2996444511 cites W2003752338 @default.
- W2996444511 cites W2012811501 @default.
- W2996444511 cites W2017214666 @default.
- W2996444511 cites W2019202657 @default.
- W2996444511 cites W2021142761 @default.
- W2996444511 cites W2023285086 @default.
- W2996444511 cites W2030281780 @default.
- W2996444511 cites W2030737358 @default.
- W2996444511 cites W2051047430 @default.
- W2996444511 cites W2053209431 @default.
- W2996444511 cites W2059196248 @default.
- W2996444511 cites W2064675550 @default.
- W2996444511 cites W2071583824 @default.
- W2996444511 cites W2071837382 @default.
- W2996444511 cites W2074095475 @default.
- W2996444511 cites W2075233372 @default.
- W2996444511 cites W2076736702 @default.
- W2996444511 cites W2087885243 @default.
- W2996444511 cites W2088136338 @default.
- W2996444511 cites W2089054338 @default.
- W2996444511 cites W2089865848 @default.
- W2996444511 cites W2098495802 @default.
- W2996444511 cites W2107878631 @default.
- W2996444511 cites W2126943165 @default.
- W2996444511 cites W2129080587 @default.
- W2996444511 cites W2138264285 @default.
- W2996444511 cites W2144212877 @default.
- W2996444511 cites W2146245861 @default.
- W2996444511 cites W2146471526 @default.
- W2996444511 cites W2148377183 @default.
- W2996444511 cites W2150733612 @default.
- W2996444511 cites W2158719734 @default.
- W2996444511 cites W2162063693 @default.
- W2996444511 cites W2174002360 @default.
- W2996444511 cites W2240207283 @default.
- W2996444511 cites W2418033038 @default.
- W2996444511 cites W2519610940 @default.
- W2996444511 cites W2531267622 @default.
- W2996444511 cites W2601171548 @default.
- W2996444511 cites W2766756701 @default.
- W2996444511 cites W2792863839 @default.
- W2996444511 cites W2886265353 @default.
- W2996444511 cites W2890014048 @default.
- W2996444511 cites W2898796705 @default.
- W2996444511 cites W2898978958 @default.
- W2996444511 cites W2905872298 @default.
- W2996444511 cites W2912189257 @default.
- W2996444511 cites W2941541209 @default.
- W2996444511 cites W2952570801 @default.
- W2996444511 cites W2955229286 @default.
- W2996444511 cites W4249387858 @default.
- W2996444511 cites W4376848474 @default.
- W2996444511 cites W772924519 @default.
- W2996444511 cites W985304663 @default.
- W2996444511 doi "https://doi.org/10.1016/j.scitotenv.2019.136068" @default.
- W2996444511 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31869706" @default.
- W2996444511 hasPublicationYear "2020" @default.
- W2996444511 type Work @default.
- W2996444511 sameAs 2996444511 @default.
- W2996444511 citedByCount "53" @default.
- W2996444511 countsByYear W29964445112020 @default.
- W2996444511 countsByYear W29964445112021 @default.
- W2996444511 countsByYear W29964445112022 @default.
- W2996444511 countsByYear W29964445112023 @default.
- W2996444511 crossrefType "journal-article" @default.
- W2996444511 hasAuthorship W2996444511A5003432414 @default.
- W2996444511 hasAuthorship W2996444511A5004359941 @default.
- W2996444511 hasAuthorship W2996444511A5008733471 @default.
- W2996444511 hasAuthorship W2996444511A5022061676 @default.
- W2996444511 hasAuthorship W2996444511A5044783062 @default.
- W2996444511 hasAuthorship W2996444511A5062112628 @default.
- W2996444511 hasAuthorship W2996444511A5069440741 @default.
- W2996444511 hasAuthorship W2996444511A5073000384 @default.
- W2996444511 hasConcept C100970517 @default.