Matches in SemOpenAlex for { <https://semopenalex.org/work/W2996470210> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W2996470210 endingPage "476" @default.
- W2996470210 startingPage "468" @default.
- W2996470210 abstract "The type of host that a virus can infect, referred to as host specificity or tropism, influences infectivity and thus is important for disease diagnosis, epidemic response, and prevention. Advances in DNA sequencing technology have enabled rapid metagenomic analyses of viruses, but the prediction of virus phenotype from genome sequences is an active area of research. As such, automatic prediction of host tropism from analysis of genomic information is of considerable utility. Previous research has applied machine learning methods to accomplish this task, although deep learning (particularly deep convolutional neural network, CNN) techniques have not yet been applied. These techniques have the ability to learn how to recognize critical hierarchical structures within the genome in a data-driven manner. We designed deep CNN models to identify host tropism for human and avian influenza A viruses based on protein sequences and performed a detailed analysis of the results. Our findings show that deep CNN techniques work as well as existing approaches (with 99% mean accuracy on the binary prediction task) while performing end-to-end learning of the prediction model (without the need to specify handcrafted features). The findings also show that these models, combined with standard principal component analysis, can be used to quantify and visualize viral strain similarity. Deep learning techniques have the ability to learn how to recognize critical hierarchical structures within the genome in a data-driven manner. The authors designed deep convolutional neural network models to identify host tropism for human and avian influenza A viruses based on protein sequences and performed a detailed analysis of the results. Findings show that deep convolutional neural network techniques work as well as existing approaches while performing end-to-end learning of the prediction model (without the need to specify handcrafted features)." @default.
- W2996470210 created "2019-12-26" @default.
- W2996470210 creator A5006346550 @default.
- W2996470210 creator A5023468724 @default.
- W2996470210 creator A5054039049 @default.
- W2996470210 creator A5056256101 @default.
- W2996470210 creator A5075816748 @default.
- W2996470210 date "2019-12-01" @default.
- W2996470210 modified "2023-10-01" @default.
- W2996470210 title "Predicting Influenza A Tropism with End-to-End Learning of Deep Networks" @default.
- W2996470210 cites W1019830208 @default.
- W2996470210 cites W1988044361 @default.
- W2996470210 cites W2002740941 @default.
- W2996470210 cites W2059782458 @default.
- W2996470210 cites W2089468765 @default.
- W2996470210 cites W2097117768 @default.
- W2996470210 cites W2101165138 @default.
- W2996470210 cites W2102335249 @default.
- W2996470210 cites W2112796928 @default.
- W2996470210 cites W2121590486 @default.
- W2996470210 cites W2127322768 @default.
- W2996470210 cites W2128486459 @default.
- W2996470210 cites W2130479394 @default.
- W2996470210 cites W2140474433 @default.
- W2996470210 cites W2160881014 @default.
- W2996470210 cites W2162922414 @default.
- W2996470210 cites W2286821733 @default.
- W2996470210 cites W2553154513 @default.
- W2996470210 cites W4242729757 @default.
- W2996470210 doi "https://doi.org/10.1089/hs.2019.0055" @default.
- W2996470210 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31859569" @default.
- W2996470210 hasPublicationYear "2019" @default.
- W2996470210 type Work @default.
- W2996470210 sameAs 2996470210 @default.
- W2996470210 citedByCount "12" @default.
- W2996470210 countsByYear W29964702102021 @default.
- W2996470210 countsByYear W29964702102022 @default.
- W2996470210 countsByYear W29964702102023 @default.
- W2996470210 crossrefType "journal-article" @default.
- W2996470210 hasAuthorship W2996470210A5006346550 @default.
- W2996470210 hasAuthorship W2996470210A5023468724 @default.
- W2996470210 hasAuthorship W2996470210A5054039049 @default.
- W2996470210 hasAuthorship W2996470210A5056256101 @default.
- W2996470210 hasAuthorship W2996470210A5075816748 @default.
- W2996470210 hasConcept C104317684 @default.
- W2996470210 hasConcept C108583219 @default.
- W2996470210 hasConcept C126831891 @default.
- W2996470210 hasConcept C132917006 @default.
- W2996470210 hasConcept C141231307 @default.
- W2996470210 hasConcept C154945302 @default.
- W2996470210 hasConcept C159047783 @default.
- W2996470210 hasConcept C2522874641 @default.
- W2996470210 hasConcept C2777546802 @default.
- W2996470210 hasConcept C35693153 @default.
- W2996470210 hasConcept C41008148 @default.
- W2996470210 hasConcept C54355233 @default.
- W2996470210 hasConcept C70721500 @default.
- W2996470210 hasConcept C81363708 @default.
- W2996470210 hasConcept C86803240 @default.
- W2996470210 hasConceptScore W2996470210C104317684 @default.
- W2996470210 hasConceptScore W2996470210C108583219 @default.
- W2996470210 hasConceptScore W2996470210C126831891 @default.
- W2996470210 hasConceptScore W2996470210C132917006 @default.
- W2996470210 hasConceptScore W2996470210C141231307 @default.
- W2996470210 hasConceptScore W2996470210C154945302 @default.
- W2996470210 hasConceptScore W2996470210C159047783 @default.
- W2996470210 hasConceptScore W2996470210C2522874641 @default.
- W2996470210 hasConceptScore W2996470210C2777546802 @default.
- W2996470210 hasConceptScore W2996470210C35693153 @default.
- W2996470210 hasConceptScore W2996470210C41008148 @default.
- W2996470210 hasConceptScore W2996470210C54355233 @default.
- W2996470210 hasConceptScore W2996470210C70721500 @default.
- W2996470210 hasConceptScore W2996470210C81363708 @default.
- W2996470210 hasConceptScore W2996470210C86803240 @default.
- W2996470210 hasIssue "6" @default.
- W2996470210 hasLocation W29964702101 @default.
- W2996470210 hasLocation W29964702102 @default.
- W2996470210 hasOpenAccess W2996470210 @default.
- W2996470210 hasPrimaryLocation W29964702101 @default.
- W2996470210 hasRelatedWork W2731899572 @default.
- W2996470210 hasRelatedWork W2999805992 @default.
- W2996470210 hasRelatedWork W3011074480 @default.
- W2996470210 hasRelatedWork W3116150086 @default.
- W2996470210 hasRelatedWork W3133861977 @default.
- W2996470210 hasRelatedWork W3192840557 @default.
- W2996470210 hasRelatedWork W4200173597 @default.
- W2996470210 hasRelatedWork W4291897433 @default.
- W2996470210 hasRelatedWork W4312417841 @default.
- W2996470210 hasRelatedWork W4321369474 @default.
- W2996470210 hasVolume "17" @default.
- W2996470210 isParatext "false" @default.
- W2996470210 isRetracted "false" @default.
- W2996470210 magId "2996470210" @default.
- W2996470210 workType "article" @default.