Matches in SemOpenAlex for { <https://semopenalex.org/work/W2996500162> ?p ?o ?g. }
- W2996500162 endingPage "7212" @default.
- W2996500162 startingPage "7212" @default.
- W2996500162 abstract "The South Korean government has recently focused on environmental protection efforts to improve water quality which has been degraded by nonpoint sources of water pollution from runoff. In order to take care of environmental issues, many physically-based models have been used. However, the physically-based models take a large amount of work to carry out site simulations, and there is a need to find faster and more efficient approaches. For an alternative approach for sediment management using the physically-based models, the machine learning-based models were used for estimating sediment trapping efficiency of vegetative filter strips. The seven nonlinear regression algorithms of machine learning models (e.g., decision tree, multilayer perceptron, k-nearest neighbors, support vector machine, random forest, AdaBoost and gradient boosting) were applied to select the model which best estimates the sediment trapping efficiency of vegetative filter strips. The sediment trapping efficiencies calculated by the machine learning models showed similar results as those of vegetative filter strip modeling system (VFSMOD-W) model. As a result of the accuracy evaluation among the seven machine learning models, the multilayer perceptron model-derived the best fit with VFSMOD-W model. It is expected that the sediment trapping efficiency of the vegetative filter strips in various cases in agricultural fields in South Korea can be predicted easier, faster and accurately by the machine learning models developed in this study. Machine learning models can be used to evaluate sediment trapping efficiency without complicated physically-based model design and high computational cost. Therefore, decision makers can maximize the quality of their outputs by minimizing their efforts in the decision-making process." @default.
- W2996500162 created "2019-12-26" @default.
- W2996500162 creator A5013328806 @default.
- W2996500162 creator A5014795991 @default.
- W2996500162 creator A5050845910 @default.
- W2996500162 creator A5056874260 @default.
- W2996500162 creator A5063339884 @default.
- W2996500162 creator A5067279778 @default.
- W2996500162 creator A5069963923 @default.
- W2996500162 creator A5083905513 @default.
- W2996500162 date "2019-12-16" @default.
- W2996500162 modified "2023-09-27" @default.
- W2996500162 title "Evaluation of Sediment Trapping Efficiency of Vegetative Filter Strips Using Machine Learning Models" @default.
- W2996500162 cites W1920848989 @default.
- W2996500162 cites W1971627848 @default.
- W2996500162 cites W1988314968 @default.
- W2996500162 cites W2018790612 @default.
- W2996500162 cites W2019894463 @default.
- W2996500162 cites W2023390525 @default.
- W2996500162 cites W2023496910 @default.
- W2996500162 cites W2033904036 @default.
- W2996500162 cites W2042985051 @default.
- W2996500162 cites W2043517936 @default.
- W2996500162 cites W2046785557 @default.
- W2996500162 cites W2050752448 @default.
- W2996500162 cites W2052326365 @default.
- W2996500162 cites W2071272611 @default.
- W2996500162 cites W2074271644 @default.
- W2996500162 cites W2074770406 @default.
- W2996500162 cites W2088794999 @default.
- W2996500162 cites W2089305227 @default.
- W2996500162 cites W2089367555 @default.
- W2996500162 cites W2152761983 @default.
- W2996500162 cites W2186440592 @default.
- W2996500162 cites W2206631347 @default.
- W2996500162 cites W2296077894 @default.
- W2996500162 cites W2321278764 @default.
- W2996500162 cites W2486853354 @default.
- W2996500162 cites W2749797865 @default.
- W2996500162 cites W2761140038 @default.
- W2996500162 cites W2766300505 @default.
- W2996500162 cites W2911964244 @default.
- W2996500162 cites W2953636448 @default.
- W2996500162 cites W3048676356 @default.
- W2996500162 cites W3097096317 @default.
- W2996500162 cites W4236137412 @default.
- W2996500162 cites W4239510810 @default.
- W2996500162 doi "https://doi.org/10.3390/su11247212" @default.
- W2996500162 hasPublicationYear "2019" @default.
- W2996500162 type Work @default.
- W2996500162 sameAs 2996500162 @default.
- W2996500162 citedByCount "4" @default.
- W2996500162 countsByYear W29965001622020 @default.
- W2996500162 countsByYear W29965001622021 @default.
- W2996500162 countsByYear W29965001622022 @default.
- W2996500162 crossrefType "journal-article" @default.
- W2996500162 hasAuthorship W2996500162A5013328806 @default.
- W2996500162 hasAuthorship W2996500162A5014795991 @default.
- W2996500162 hasAuthorship W2996500162A5050845910 @default.
- W2996500162 hasAuthorship W2996500162A5056874260 @default.
- W2996500162 hasAuthorship W2996500162A5063339884 @default.
- W2996500162 hasAuthorship W2996500162A5067279778 @default.
- W2996500162 hasAuthorship W2996500162A5069963923 @default.
- W2996500162 hasAuthorship W2996500162A5083905513 @default.
- W2996500162 hasBestOaLocation W29965001621 @default.
- W2996500162 hasConcept C106131492 @default.
- W2996500162 hasConcept C119857082 @default.
- W2996500162 hasConcept C12267149 @default.
- W2996500162 hasConcept C141404830 @default.
- W2996500162 hasConcept C154945302 @default.
- W2996500162 hasConcept C169258074 @default.
- W2996500162 hasConcept C179717631 @default.
- W2996500162 hasConcept C200925200 @default.
- W2996500162 hasConcept C31972630 @default.
- W2996500162 hasConcept C41008148 @default.
- W2996500162 hasConcept C50644808 @default.
- W2996500162 hasConcept C70153297 @default.
- W2996500162 hasConcept C84525736 @default.
- W2996500162 hasConceptScore W2996500162C106131492 @default.
- W2996500162 hasConceptScore W2996500162C119857082 @default.
- W2996500162 hasConceptScore W2996500162C12267149 @default.
- W2996500162 hasConceptScore W2996500162C141404830 @default.
- W2996500162 hasConceptScore W2996500162C154945302 @default.
- W2996500162 hasConceptScore W2996500162C169258074 @default.
- W2996500162 hasConceptScore W2996500162C179717631 @default.
- W2996500162 hasConceptScore W2996500162C200925200 @default.
- W2996500162 hasConceptScore W2996500162C31972630 @default.
- W2996500162 hasConceptScore W2996500162C41008148 @default.
- W2996500162 hasConceptScore W2996500162C50644808 @default.
- W2996500162 hasConceptScore W2996500162C70153297 @default.
- W2996500162 hasConceptScore W2996500162C84525736 @default.
- W2996500162 hasIssue "24" @default.
- W2996500162 hasLocation W29965001621 @default.
- W2996500162 hasLocation W29965001622 @default.
- W2996500162 hasLocation W29965001623 @default.
- W2996500162 hasOpenAccess W2996500162 @default.
- W2996500162 hasPrimaryLocation W29965001621 @default.
- W2996500162 hasRelatedWork W3005055242 @default.