Matches in SemOpenAlex for { <https://semopenalex.org/work/W2996523238> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2996523238 abstract "This paper proposes a hidden feature learning technique to segment prostate from Multiparametric Magnetic Resonance Imaging. In image guided intervention an automatic segmentation of prostate is an essential task. The automated segmentation of prostate is challenging process due to blurred prostate boundaries and extensive variations in prostate shape among the subject population. To defeat these challenges, we used image patches to construct probabilistic map. Atlas based segmentation is used to minimize an energy function to label the patches as the prostate or background. The latent features are determined from prostate MR image by using sparse auto encoder. Deformable model segmentation is deployed to perform final segmentation by integrating sparse patch matching method. The performance of presented method is enormously tested on the dataset that contains T2-weighted prostate MR images of 184 subjects. The performance indices like dice similarity coefficient (DSC), and mean absolute surface distance (MASD) are used to evaluate the performance of our method by considering manual groundtruth delineated by experienced radiologist. DSC obtained by our algorithm is $87.4 % pm 4.6%$ , and MASD of 1.80 mm. The preliminary results demonstrate that the learned features are more competent in MR prostate segmentation." @default.
- W2996523238 created "2019-12-26" @default.
- W2996523238 creator A5009326039 @default.
- W2996523238 creator A5045712638 @default.
- W2996523238 creator A5057535574 @default.
- W2996523238 date "2019-10-01" @default.
- W2996523238 modified "2023-09-23" @default.
- W2996523238 title "Automatic Segmentation of Prostate from Multiparametric MR Images Using Hidden Features and Deformable Model" @default.
- W2996523238 cites W126481648 @default.
- W2996523238 cites W132734906 @default.
- W2996523238 cites W1963622760 @default.
- W2996523238 cites W1966047305 @default.
- W2996523238 cites W1980913318 @default.
- W2996523238 cites W2005129295 @default.
- W2996523238 cites W2039051707 @default.
- W2996523238 cites W2046168168 @default.
- W2996523238 cites W2050763737 @default.
- W2996523238 cites W2052617496 @default.
- W2996523238 cites W2069637751 @default.
- W2996523238 cites W2104095591 @default.
- W2996523238 cites W2122402841 @default.
- W2996523238 cites W2132984323 @default.
- W2996523238 cites W2136224190 @default.
- W2996523238 cites W2136922672 @default.
- W2996523238 cites W2145046071 @default.
- W2996523238 cites W2145247355 @default.
- W2996523238 cites W2146512659 @default.
- W2996523238 cites W2161969291 @default.
- W2996523238 cites W2164598857 @default.
- W2996523238 cites W2295850614 @default.
- W2996523238 cites W2323200062 @default.
- W2996523238 cites W2401040035 @default.
- W2996523238 cites W2540986973 @default.
- W2996523238 cites W2889646458 @default.
- W2996523238 doi "https://doi.org/10.1109/tencon.2019.8929686" @default.
- W2996523238 hasPublicationYear "2019" @default.
- W2996523238 type Work @default.
- W2996523238 sameAs 2996523238 @default.
- W2996523238 citedByCount "0" @default.
- W2996523238 crossrefType "proceedings-article" @default.
- W2996523238 hasAuthorship W2996523238A5009326039 @default.
- W2996523238 hasAuthorship W2996523238A5045712638 @default.
- W2996523238 hasAuthorship W2996523238A5057535574 @default.
- W2996523238 hasConcept C103278499 @default.
- W2996523238 hasConcept C115961682 @default.
- W2996523238 hasConcept C121608353 @default.
- W2996523238 hasConcept C124504099 @default.
- W2996523238 hasConcept C126322002 @default.
- W2996523238 hasConcept C153180895 @default.
- W2996523238 hasConcept C154945302 @default.
- W2996523238 hasConcept C2776235491 @default.
- W2996523238 hasConcept C2908647359 @default.
- W2996523238 hasConcept C31972630 @default.
- W2996523238 hasConcept C41008148 @default.
- W2996523238 hasConcept C71924100 @default.
- W2996523238 hasConcept C89600930 @default.
- W2996523238 hasConcept C99454951 @default.
- W2996523238 hasConceptScore W2996523238C103278499 @default.
- W2996523238 hasConceptScore W2996523238C115961682 @default.
- W2996523238 hasConceptScore W2996523238C121608353 @default.
- W2996523238 hasConceptScore W2996523238C124504099 @default.
- W2996523238 hasConceptScore W2996523238C126322002 @default.
- W2996523238 hasConceptScore W2996523238C153180895 @default.
- W2996523238 hasConceptScore W2996523238C154945302 @default.
- W2996523238 hasConceptScore W2996523238C2776235491 @default.
- W2996523238 hasConceptScore W2996523238C2908647359 @default.
- W2996523238 hasConceptScore W2996523238C31972630 @default.
- W2996523238 hasConceptScore W2996523238C41008148 @default.
- W2996523238 hasConceptScore W2996523238C71924100 @default.
- W2996523238 hasConceptScore W2996523238C89600930 @default.
- W2996523238 hasConceptScore W2996523238C99454951 @default.
- W2996523238 hasLocation W29965232381 @default.
- W2996523238 hasOpenAccess W2996523238 @default.
- W2996523238 hasPrimaryLocation W29965232381 @default.
- W2996523238 hasRelatedWork W1485614034 @default.
- W2996523238 hasRelatedWork W1631910785 @default.
- W2996523238 hasRelatedWork W1669643531 @default.
- W2996523238 hasRelatedWork W2110230079 @default.
- W2996523238 hasRelatedWork W2119108994 @default.
- W2996523238 hasRelatedWork W2122581818 @default.
- W2996523238 hasRelatedWork W2159066190 @default.
- W2996523238 hasRelatedWork W2536634271 @default.
- W2996523238 hasRelatedWork W2739874619 @default.
- W2996523238 hasRelatedWork W2895616727 @default.
- W2996523238 isParatext "false" @default.
- W2996523238 isRetracted "false" @default.
- W2996523238 magId "2996523238" @default.
- W2996523238 workType "article" @default.